• Title/Summary/Keyword: Spring force

Search Result 864, Processing Time 0.028 seconds

Structural Analysis of Rope Brake by Spring Type (스프링식 로프 브레이크의 구조해석)

  • Lee Jong-Sun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.89-94
    • /
    • 2005
  • The objective of this study is structural analysis of rope brake by spring type. The finite element model was developed to compute the stress, strain and friction force for rope brake by spring type. The ANSYS code was used for this analysis. In order to structural analysis of rope brake, many variables such as internal pressure, boundary condition load condition and constraints were considered.

Structural Analysis of Rope Brake by Spring Type (스프링식 로프 브레이크의 구조해석)

  • 이종선;원종진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.150-155
    • /
    • 2004
  • The objective of this study is structural analysis of rope brake by spring type. The finite element model was developed to compute the stress, strain and friction force for rope brake by spring type. The ANSYS code was used for this analysis. In order to structural analysis of rope brake, many variables such as internal pressure, boundary condition, load condition and constraints were considered.

  • PDF

Finite Element Analysis and Design Verification Test of Circular Plate Spring in Thruster Valve of Satellite Propulsion System (위성 추진시스템 추력기 밸브 내 원형 판스프링 유한요소해석 및 설계 검증시험)

  • Ko, Sujeong;Son, Miso;Kim, Namhui;Kim, Jonghak;Yoon, Hosung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.838-842
    • /
    • 2017
  • The thruster valve, which is one of the key components applied to the mono-propellant system for the satellite, has a circular plate spring structure. It can be designed as a structure that does not have positional deformation and particles by friction and repetitive motion. In this study, finite element analysis and verification were performed by setting the width of the circular plate spring as a design parameter with the material, thickness and radius of the circular plate spring as fixed variables. The linearity of the spring constant is shown by the graph that is spring force with displacement. It is confirmed that the optimization design of the circular plate spring is possible by the spring force tendency according to the total area of circular plate spring.

  • PDF

A Study on the Optimal Design of Automotive Gas Spring (차량용 가스스프링의 최적설계에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.45-50
    • /
    • 2017
  • The gas spring is a hydropneumatic adjusting element, consisting of a pressure tube, a piston rod, a piston and a connection fitting. The gas spring is filled with compressed nitrogen within the cylinder. The filling pressure acts on both sides of the piston and because of area difference it produces an extension force. Therefore, a gas spring is similar in function compare to mechanical coil spring. Conversely, optimization is a process of finding the best set of parameters to reach a goal while not violating certain constraints. The AMESim software provides NLPQL (Nonlinear Programming by Quadratic Lagrangian) and GA (genetic algorithm) for optimization. The NLPQL method builds a quadratic approximation to the Lagrange function and linear approximations to all output constraints at each iteration, starting with the identity matrix for the Hessian of the Lagrangian, and gradually updating it using the BFGS method. On each iteration, a quadratic programming problem is solved to find an improved design until the final convergence to the optimum design. In this study, we conducted optimization design of the gas spring reaction force with NLPQL.

A Study on Determination of the Minimum Vertical Spring Stiffness of Track Pads in Korea High Speed Railway. (고속철도 궤도패드의 최소 수직 스프링계수 결정에 관한 연구)

  • Kim Jeong-il;Yang Sin-Chu;Kim Yun-Tae;Suh Sa-Bum
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.504-509
    • /
    • 2005
  • Railway noise and vibration has been recognized as major problems with the speed-up of rolling stock. As a kind of solution to these problems, the decrease of stiffness of track pad have been tried. However, in this case, overturning of rail due to lateral force should be considered because it can have effect on the safety of running train. Therefore, above two things - decrease of stiffness of track pad and overturning of rail due to lateral force - should be considered simultaneously for the appropriate determination of spring coefficient of track pad. With this viewpoint, minimum spring coefficient of track pad is estimated through the comparison between the theoretical relationship about the overturning of rail and 3-dimensional FE analysis result. Two kinds of Lateral force and wheel load are used as input loads. Extracted values from the conventional estimation formula and the Shinkansen design loads are used. It is found that the overturning of rail changes corresponding to the change of the stiffness of track pad and the ratio of lateral force to wheel load. Moreover, it is found that the analysis model can have influence on the results. Through these procedure, minimum spring coefficient of track pad is estimated.

  • PDF

Variable Stiffness Series Elastic Actuator Design for Active Suspension (능동형 현가장치를 위한 가변 강성 직렬 탄성 액추에이터 설계)

  • Bang, Jinuk;Choi, Minsik;Lee, Donghyung;Park, Jungho;Park, Eunjae;Lee, Geunil;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.131-138
    • /
    • 2019
  • In this study, we developed an FSEA(Force-sensing Series Elastic Actuator) composed of a spring and an actuator has been developed to compensate for external disturbance forced. The FSEA has a simple structure in which the spring and the actuator are connected in series, and the external force can be easily measured through the displacement of the spring. And the characteristic of the spring absorbs the shock to the small disturbance and increases the sense of stability. It is designed and constructed to control the stiffness of such springs more flexibly according to the situation. The conventional FSEA uses a fixed stiffness spring and the actuator is not compensated properly when it receives large or small external force. Through this experiment, it is confirmed that FSEA compensates the external force through the proposed algorithm that the variable stiffness compensates well for large and small external forces.

A study on the effect of die profile radius on formability in deep-drawing process with spring-type blankholder system (스프링형 블랭크홀더방식의 디프드로잉 가공에서 다이 윤곽반경이 성형성에 미치는 영향에 관한 연구)

  • 이종국;강명순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.35-42
    • /
    • 1989
  • The major purpose of this paper is a study on the effect of die profile radius on the formability of spring-type blankholder system in deep drawing process. By drawing the various materials, formability is studied by means of checking the drawing force, blankholding force variation, limiting drawing ratio and wall wrinkling phenomenon. As the die profile radius increases, the maximum drawing force and maximum blankholding force decrease regardless of lubrication condition. Because better lubrication induces blankholding force to rise, spring type blankholder system is better to protect flange wrinkling phenomenon than constant pressure type. And wall wrinkling phenomenon was not detected in experimental die radius range, so the Miyakawa's upper wrinkling limit is understimated in case of material tested.

  • PDF

Dynamic Stability of a Drum-brake Shoe Under a Pulsating Frictional Force (주기적인 마찰력을 받는 드럼-브레이크 슈의 동적안정성)

  • 류봉조;오부진;임경빈;김효준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.890-896
    • /
    • 2002
  • This paper deals with the dynamic stability of a brake shoe under pulsating frictional forces. A lining part of brake systems is assumed as a distributed spring, and the supported elements of a shoe are assumed as translational springs for a constant distributed frictional force and a pulsating frictional force. Governing equations are derived by the use of the extended Hamilton's principle, and numerical results are calculated by finite element method. The critical distributed frictional force and instability regions were investigated for the change of distributed spring constants and translational spring constants.

Design of a Height Adjustable Bunker Bed Using a Gas Spring (가스 스프링을 이용한 높이조절 벙커침대 설계)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.19-27
    • /
    • 2021
  • A bunker bed is a type of furniture that efficiently utilizes a narrow indoor space by having a high bed and using the empty space below as a living and storage space. The demand for multi-purpose furniture is increasing due to the recent increase in single-person households and wide-spread shared accommodation. According to the consumer research, one of the major drawbacks of a bunker bed was to get on and off the bed through a ladder or stairs. In order to overcome these problems, it was confirmed that the height adjustment function that can easily adjust the minimum and maximum heights of the bed was necessary. In this study, a height adjustable bunker bed was designed by using a gas spring that generates a repulsive force by the compressed gas inside. The design process consisted of the following three steps: Firstly, the hysteresis characteristics due to a friction and spring constant of a commercial gas spring were confirmed by measuring the repulsive force vs. compressed displacement. Secondly, requirements of the vertical lifting force exerted on the bed against gravity force were derived. Finally, the height-adjustable bed using the four-bar link mechanism was designed with 4 parameters so that the bed weight of 60-70 kgf could be adjusted to 800 mm in height by an affordable initial operation force. The performance was verified through prototype production and the results of vertical displacement and force to move were nearly the same as designed. In addition, an electrically operated height-adjustable bed was also designed with linear actuators and the performance was proved with the prototype.

Lateral Force Calibration of Colloidal Probe in Liquid Environment Using Reference Cantilever (기준 외팔보를 이용한 액체 환경에서 Colloidal Probe의 수평방향 힘 교정)

  • Je, Youngwan;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.29 no.3
    • /
    • pp.160-166
    • /
    • 2013
  • There is an indispensable need for force calibration for quantitative nanoscale force measurement using atomic force microscopy. Calibrating the normal force is relatively straightforward, whereas doing so for the lateral force is often complicated because of the difficulty in determining the optical lever sensitivity. In particular, the lateral force calibration of a colloidal probe in a liquid environment often has a larger uncertainty as a result of the effects of the epoxy, the location of the colloidal particle on the cantilever, and a decrease in the quality factor. In this work, the lateral force of a colloidal probe using a reference cantilever with a known spring constant was calibrated in a liquid environment. By obtaining the spring constant and the lateral sensitivity at the equator of a spherical colloidal particle, the damage to the bottom surface of the colloidal particle could be eliminated. Further, it was shown that the effect of the contact stiffness on the determination of the lateral spring constant of the cantilever could be minimized. It was concluded that this method can be effectively used for the lateral force calibration of a colloidal probe in a liquid environment.