• Title/Summary/Keyword: Spray coating method

Search Result 275, Processing Time 0.029 seconds

액체로켓엔진 연소기에 적용된 니켈-크롬 코팅의 열차폐 효율과 내구성 (Thermal Barrier Efficiency and Endurance of Ni-Cr Coating in Liquid Rocket Engine Combustor)

  • 이광진;임병직;김종규;한영민;최환석
    • 항공우주기술
    • /
    • 제8권1호
    • /
    • pp.138-143
    • /
    • 2009
  • 액체로켓엔진 연소기에 적용된 대기 플라즈마 코팅 및 전해/무전해 도금 코팅의 열차폐 효율과 내구성 평가를 수행하였다. 연소시험 결과 대기 플라즈마 방식의 $ZrO_2$, NiCrAlY 코팅은 로켓엔진 연소기의 초음속 유동영역에서 코팅이 표면에서 박리되는 현상이 간헐적으로 발생하였으며 따라서 이러한 문제를 극복할 수 있는 대체 코팅 방식이 요구되었다. 시험 결과 열차폐 효율 및 내구성 관점에서 대기 플라즈마 방식의 $ZrO_2$, NiCrAlY 코팅의 대안으로 무전해/전해 방식을 사용한 니켈-크롬 코팅을 사용할 수 있음을 알 수 있었다.

  • PDF

저온 분사 코팅 공정에서 충돌속도에 따른 CuNiTiZr 벌크 비정질 소재의 활성화 에너지와 결정화 거동 분석 (Effects of Impact Velocity on Crystallization and Activation Energy of Cu-based Bulk Metallic Glasses in Kinetic Spray Coating)

  • 윤상훈;배규열;김정환;이창희
    • 한국표면공학회지
    • /
    • 제41권6호
    • /
    • pp.301-307
    • /
    • 2008
  • In this paper, nanocrystallization of CuNiTiZr bulk metallic glass (BMG) subjecting to a kinetic spraying, dependent on impact velocity, was investigated by numerical and experimental approaches. The crystallization fraction and nucleation activation energy of initial feedstock and as-deposited coating were estimated by DSC and Kissinger method, respectively. The results of numerical modeling and experiment showed that the crystalline fraction and nucleation activation energy in BMG coatings were depended on kinetic energy of incident particle. Upon impact, the conversion of particle kinetic energy leads to not only decreasing free energy barrier but also increasing the driving force for an amorphous to crystalline phase transformation. The nanocrystallization of BMGs is associated with the strain energy delivered by a plastic deformation with a high strain rate.

Sliding Wear Characteristics of plasma Sprayed $8\%Y_{2}O_3-ZrO_2$ Coating for Post-spray Heat Treatment

  • Chae Young-Hun;Kim Seock-Sam
    • KSTLE International Journal
    • /
    • 제6권2호
    • /
    • pp.45-50
    • /
    • 2005
  • Plasma ceramic spray that is applied on a machine part under severe work conditions has been investigated for tribological behavior. The application of ceramic coatings by plasma spray has become essential in tribosystems to produce wear resistance and long life in severe conditions. The purpose of this study was to investigate the wear characteristics of $8\%Y_{2}O_3-ZrO_2$ coating, in view of the effect of post-spay heat treatment. The plasma-sprayed $8\%Y_{2}O_3-ZrO_2$ coating was studied to know the relationship between phase transformations and wear behavior related to post-spray heat treatment. Wear test was carried out with ball on disk type on normal loads of 50N,70N and 90N under room temperature. The phase transformation of phase and the value of residual stress were measured by X-ray diffraction method(XRD). Tribological characteristics and wear mechanisms of coatings were observed by SEM. The tribological wear performance was discussed in the focusing of residual stress. Consequently, post-spray heat treatment plays an important role in decreasing residual stress. Residual stress in the coating system has a significant influence on the wear mechanism of coating.

3차원 마이크로 구조를 위한 포토레지스트 스프레이 코팅 (Photoresist spray coating for three-dimensional micro structure)

  • 김도욱;은덕수;배영호;유인식;석창길;정종현;조찬섭;이종현
    • 센서학회지
    • /
    • 제15권3호
    • /
    • pp.153-157
    • /
    • 2006
  • This paper presents the method for three-dimensional micro structure with photoresist spray coating system. The system consists of a high temperature rotational chuck, ultrasonic spray nozzle module, angle control module and nozzle moving module. Spray coating system is effected by several parameters such as the solid contents, the dispensed volume, the scanning speed of the spray nozzle and the wafer of dimension. The photoresist (AZ 1512) has been coated on the three-dimensional micro structure by spray coating system and the characteristics have been evaluated.

Superhydrophobic Surfaces for condensation by using spray coating method

  • Oh, Seungtae;Seo, Donghyun;Lee, Choongyeop;Nam, Youngsuk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.157.2-157.2
    • /
    • 2016
  • Water repellent surfaces may enhance the condensation by efficiently removing the condensed droplets. However, such surfaces may lose their original performance as they are exposed to external mechanical stresses. In this work, we fabricated spray-coated mechanically robust superhydrophobic surfaces using treated titanium dioxide (Type 1) or silica particles (Type 2). Then we compared the mechanical robustness of such surfaces with the silane-coated superhydrophobic surface and PEEK coated surface using a controlled-sand blasting method. The results show that the spray-coated samples can maintain the same level of the contact angle hysteresis than silane-coated superhydorphobic surface after sand blasting at 2 bar. The spray-coating method was applied to the tube type condenser and the condensation behaviors were observed within the environmental chamber with controlled pressure, humidity and non-condensable gas. Previously-reported droplet jumping was observed in the early stage of the condensation event, but soon the droplet jumping stopped and only dropwise condensation was observed since the condensed droplets were pinned on the cracks at spray-coated surfaces. The static contact angle decreases from $158.0^{\circ}$ to $133.2^{\circ}$, and hysteresis increases from $3.0^{\circ}$ to $23.5^{\circ}$ when active condensation occurs on such surfaces. This work suggests the benefits and limitation of spray-coated superhydrophobic condensers and help develop advanced condensers for practical use.

  • PDF

Effect of the Raw Material and Coating Process Conditions on the Densification of 8 wt% Y2O3-ZrO2 Thermal Barrier Coating by Atmospheric Plasma Spray

  • Oh, Yoon-Suk;Kim, Seong-Won;Lee, Sung-Min;Kim, Hyung-Tae;Kim, Min-Sik;Moon, Heung-Soo
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.628-634
    • /
    • 2016
  • The 8 wt% yttria($Y_2O_3$) stabilized zirconia ($ZrO_2$), 8YSZ, a typical thermal barrier coating (TBC) for turbine systems, was fabricated under different starting powder conditions and coating parameters by atmospheric plasma spray (APS) coating process. Four different starting powders were prepared by conventional spray dry method with different additive and process parameter conditions. As a result, large- and small-size spherical-type particles and Donut-type particles were obtained. Dense structure of 8YSZ coating was produced when small size spherical-type or Donut-type particles were used. On the other hand, 8YSZ coating with a porous structure was formed from large-size spherical-type particles. Furthermore, a segmented coating structure with vertical cracks was observed after post heat treatment on the surface of dense structured coating by argon plasma flame at an appropriate gun distance and power condition.

지르코니아 충전이 지르코니아계 용사코팅층의 마모마찰에 미치는 영향 (Effect of Sealing Process on the Tribological Behavior of the Plasma Spray Zirconia Based Coatings)

  • 신종한;임대순;안효석
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.265-271
    • /
    • 1998
  • High temperature wear behavior of plasma sprayed zirconia based coating sealing with zirconia sol were investigated for high temperature wear resistance application. The zirconia powders containing 2.5, 5.0, 7.5, 10.0 mol% of MoS$_2$, $Fe_2O_3$ for plasma spray were made by spray drying method. As-sprayed coating was sealed by zirconia-sol to fill up the pore and crack in coating. wear test were performed at temperature ranges from room temperature to 600$\circ$C. The microstructural changes of before and after sealing process were examined by SEM, XRD and EPMA. After sealing process, the porosity was decreased and micro-hardness was increased. The wear properties of coating after sealing process were improved by sealing of pores and cracks. The behavior of wear amount and coefficient of friction were same tendency to before sealing process.

  • PDF

Effect of an temperatures of post-spray heat treatment on wear behavior of $8%Y_2O_3-ZrO_2$ coating

  • Chae, Y.H.;Kim, S.S.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.181-182
    • /
    • 2002
  • Most recent, Plasma ceramic spray is used on parts of tribosystem, has been investigated on the tribological performance. The application of ceramic coatings by plasma spray has become essential in tribosystems to produce better wear resistance and longer life in various conditions. The purpose of this work was to investigate the wear behavior of $8%Y_2O_3-ZrO_2$ coating due to temperatures of post-spay heat treatment. The plasma-sprayed $8%Y_2O_3--Zirconia$ coating was idiscussed to know the relationship between phase transformations and temperatures of post- spray heat treatment. Wear tests was carried out with ball on disk type on normal load of 50N, 70N and 90N under room temperature. The transformation of phase and the value of residual stress were measured by X-ray diffraction method(XRD). Tribological characteristics and wear mechanisms of coatings was observed by SEM. The tribologieal wear performance was discussed a point of view for residual stress. Consequently. post-spray heat treatment plays an important role in decreasing residual stress. Residual stress in coating system has a significant influence on the wear mechanism of coating.

  • PDF

실링이 플라즈마 스프레이 코팅된 알루미나 코팅재의 내부식성에 미치는 영향 (Effect of Sealing on the Corrosion Resistance of Plasma-Sprayed Alumina Coatings)

  • 권의표;김세웅;이종권
    • 한국재료학회지
    • /
    • 제32권10호
    • /
    • pp.442-447
    • /
    • 2022
  • Sealing treatment is a post-surface treatment of the plasma spray coating process to improve the corrosion resistance of the coating material. In this study, the effect of the sealing on the corrosion resistance and adhesive strength of the plasma spray-coated alumina coatings was analyzed. For sealing, an epoxy resin was applied to the surface of the coated specimen using a brush. The coated specimen was subjected to a salt spray test for up to 48 hours and microstructural analysis revealed that corrosion in the coating layer/base material interface was suppressed due to the resin sealing. Measurement of the adhesive strength of the specimens subjected to the salt spray test indicated that the adhesive strength of the sealed specimens remained higher than that of the unsealed specimens. In conclusion, the resin sealing treatment for the plasma spray-coated alumina coatings is an effective method for suppressing corrosion in the coating layer/base material interface and maintaining high adhesive strength.

AE파형분류에 의한 용사코팅재의 파손해석 (Fracture Analysis of Plasma Spray Coating by Classification of AE Signals)

  • 김귀식;박경석;홍용의
    • 동력기계공학회지
    • /
    • 제6권3호
    • /
    • pp.24-30
    • /
    • 2002
  • The deformation and fracture behaviors of both Al2O3 and Ni 4.5wt.%Al plasma thermal spray coating were investigated by an acoustic emission method. Plasma thermal spray coating is formed by a process in which melted particles flying with high speed towards substrate, then crash and spread on the substrate surface cooled and solidified in a very short time, stacking of the particles makes coating. A tensile test is conducted on notch specimens in a stress range below the elastic limit of substrate. A bendind test is done on smooth specimens. The waveforms of AE generated from the both test coating specimens can be classified by FFT analysis into two types which low frequency(type I) and high frequency(type II). The type I waveform is considered to corresponds exfoliation of coating layers and type II waveform corresponds the plastic deformation of notch tip. The fracture of the coating layers can estimate by AE event and amplitude, because AE features increase when the deformation generates.

  • PDF