• 제목/요약/키워드: Spray Volume

검색결과 331건 처리시간 0.025초

Effect of Trichokonins on the Growth Characteristics of Paeonia ostii 'Fengdan' Seedling Roots

  • Chu, Peng-fei;Cao, Xing;Yang, Zhen-jing;Zhang, Xiu-sheng;Piao, Yong-ji;Jo, Hyun-Ju
    • 한국환경과학회지
    • /
    • 제25권8호
    • /
    • pp.1051-1056
    • /
    • 2016
  • The growth characteristics of Paeonia ostii 'Fengdan' seedlings roots in response to trichokonins-spray treatment were investigated in this study. One-year-old seedlings of P. ostii 'Fengdan' were potted in plastic cups containing garden mold and grown under field conditions. The results showed that application of trichokonins significantly promoted root growth in P. ostii 'Fengdan' seedlings. The total root projection area, total root surface area, total root volume, total root length, root number and root diameter of seedlings treated with 0.25 mg/L trichokonins were higher by 141.70, 116.59, 119.44, 55.97, 348.88 and 127.78%, respectively, than that of the control. Thus, the results supported the hypothesis that good growth condition for roots could directly improve their nutrient absorption and utilization efficiency, promoting plant growth and development.

완전 비습윤 고체 표면 위 타원형 액적의 충돌 및 퍼짐 거동에 대한 수치적 연구 (NUMERICAL ANALYSIS OF THE IMPACTING AND SPREADING DYNAMICS OF THE ELLIPSOIDAL DROP ON THE PERFECT NON-WETTING SOLID SURFACE)

  • 윤성찬
    • 한국전산유체공학회지
    • /
    • 제21권4호
    • /
    • pp.90-95
    • /
    • 2016
  • Leidenfrost drops with ellipsoidal shaping can control the bouncing height by adjusting the aspect ratio(AR) of the shape at the moment of impact. In this work, we focus on the effect of the AR and the impact Weber number(We) on the non-axisymmetrical spreading dynamics of the drop, which plays an important role in the control of bouncing. To understand the impact dynamics, the numerical simulation is conducted for the ellipsoidal drop impact upon the perfect non-wetting solid surface by using volume of fluid method, which shows the characteristics of the spreading behavior in each principal axis. As the AR increases, the drop has a high degree of the alignment into one principal axis, which leads to the consequent suppression of bouncing height with shape oscillation. As the We increases, the maximum spreading diameters in the principal axes both increase whereas the contact time on the solid surface rarely depends on the impact velocity at the same AR. The comprehensive understanding of the ellipsoidal drop impact upon non-wetting surface will provide the way to control of drop deposition in applications, such as surface cleaning and spray cooling.

물-기반 금나노유체의 분산안정성이 열전도도에 미치는 영향 (The Effect of Suspension Stability on the Thermal Conductivity Enhancement of Water-based Au Nanofluids)

  • 최태종;김현진;이승현;박용준;장석필
    • 한국분무공학회지
    • /
    • 제21권2호
    • /
    • pp.111-115
    • /
    • 2016
  • This paper experimentally reports the effect of suspension stability on the thermal conductivity of water-based Au nanofluids. For this purpose, the water-based Au nanofluids are prepared by the one-step method called electro-chemical method with volume fraction of 0.0005%. The thermal conductivity of water-based Au nanofluids is measured from $22^{\circ}C$ to $42^{\circ}C$ using the transient hot wire method. To quantify the suspension stability of Au nanofluids, the suspension stability of nanofluids is evaluated using the in-house developed laser scattering system at a fixed wavelength of 632.8nm with the elapsed time. Based on the experimental results, the both thermal conductivity and suspension stability of water-based Au nanofluids are gradually decreased according to the time. These results experimentally show that the suspension stability of water-based Au nanofluids is the one of the important factor of thermal conductivity.

Highly Sensitive and Selective Ethanol Sensors Using Magnesium doped Indium Oxide Hollow Spheres

  • Jo, Young-Moo;Lee, Chul-Soon;Wang, Rui;Park, Joon-Shik;Lee, Jong-Heun
    • 한국세라믹학회지
    • /
    • 제54권4호
    • /
    • pp.303-307
    • /
    • 2017
  • Pure $In_2O_3$, 0.5 and 1.0 wt% Mg doped $In_2O_3$ hollow spheres were synthesized by ultrasonic spray pyrolysis of a solution containing In-, Mg-nitrate and sucrose and their gas sensing characteristics to 5 ppm $C_2H_5OH$, p-xylene, toluene, and HCHO were measured at 250, 300 and $350^{\circ}C$. Although the addition of Mg decreases the specific surface area and the volume of meso-pores, the gas response (resistance ratio) of the 0.5 wt% Mg doped $In_2O_3$ hollow spheres to 5 ppm $C_2H_5OH$ at $350^{\circ}C$ (69.4) was significantly higher than that of the pure $In_2O_3$ hollow spheres (24.4). In addition, the Mg doped $In_2O_3$ hollow spheres showed the highest selectivity to $C_2H_5OH$. This was attributed to the dehydrogenation of $C_2H_5OH$ assisted by basic MgO into reactive $CH_3CHO$ and $H_2$.

물/PG-기반 $Al_2O_3$ 나노유체를 적용한 수냉식 CPU 쿨러의 냉각성능 (Cooling Performance of Liquid CPU Cooler using Water/PG-based $Al_2O_3$ Nanofluids)

  • 박용준;김규한;이승현;장석필
    • 한국분무공학회지
    • /
    • 제19권1호
    • /
    • pp.19-24
    • /
    • 2014
  • In this study, the cooling performance of a liquid CPU cooler using the water/propylene glycol(PG)-based $Al_2O_3$ nanofluids is experimentally investigated. Water/PG-based $Al_2O_3$ nanofluids are manufactured by two-step method with ultrasonic energy for 10 hours. The volume fractions of the nanofluids are 0.25% and 0.35%. Thermal conductivity and viscosity of the nanofluids are measured to theoretically predict the thermal performance of the liquid CPU cooler using performance factor. Performance factor results indicate that the cooling performance of the liquid CPU cooler can be improved using the manufactured nanofluids. To evaluate the cooling performance of the liquid CPU cooler experimentally, temperature differences between ambient air and heater are measured for base fluid and nanofluids respectively. Based on the results, it is shown that performance of the liquid CPU cooler using $Al_2O_3$ nanofluids is improved maximum up to 8.6% at 0.25 Vol.%.

압축착화기관용 가변밸브 듀레이션(VVD)시스템의 제어전략에 따른 유동 및 연소성능 해석 (Flow and Combustion Characteristics according Control Strategy of Variable Valve Duration System for Compression Ignition Engine)

  • 조인수;김우택;이진욱
    • 한국분무공학회지
    • /
    • 제25권2호
    • /
    • pp.45-50
    • /
    • 2020
  • Recently, global warming and environmental pollution are becoming more important, and fuel economy is becoming important. Each automobile company is actively developing various new technologies to increase fuel efficiency. CVVD(Continuously Variable Valve Duration) system means a device that continuously changes the rotational speed of the camshaft to change the valve duration according to the state of the engine. In this paper, VVT(Variable Valve Timing) and CVVD were applied to a single-cylinder diesel engine, and the characteristics of intake and exhaust flow rate and in-cylinder pressure characteristics were analyzed by numerical analysis. In order to analyze the effect of CVVD on the actual engine operation, the study was performed by setting the valve control and injection pressure as variables in two sections of the engine operating region. As a result, In the case of applying CVVD, the positive overlap with the exhaust valve is maintained, thus it is possible to secure the flow smoothness of air and increase the volumetric efficiency by improving the flow rate. The section 2 condition showed the highest peak pressure, but the pressure rise rate was similar to that of the VVT 20 and CVCD 20 conditions up to 40 bar due to the occurrence of ignition delay.

식물세포배양으로부터 Paclitaxel 정제를 위한 메조다공성 실리카의 기공크기 영향 (Effect of Pore Size of Mesoporous Spherical Silica for the Purification of Paclitaxel from Plant Cell Cultures)

  • 오현정;정경열;김진현
    • KSBB Journal
    • /
    • 제28권3호
    • /
    • pp.208-212
    • /
    • 2013
  • 분무열분해 공정에 의해 물리적 특성이 다른 네 종류의 메조 다공성 실리카를 제조하여 식물세포배양 유래 항암물질 paclitaxel 정제에 사용하였다. 실리카 흡착제의 물리적 특성에서 표면적과 기공부피 보다는 기공크기 (기공지름)이 흡착제 처리 효과에 많은 영향을 미침을 알 수 있었다. 특히 적절한 기공지름 (~9.07 nm)에서 가장 높은 순도 (~46.1%)와 수율 (~82.3%)의 paclitaxel을 얻을 수 있었다. 이러한 불순물 (타르 및 왁스 성분 포함) 제거 효과는 흡착제 처리 후 흡착제를 메탄올로 세척한 시료의 HPLC 분석 결과와 흡착제에 붙은 유기물의 TGA 정량 분석 결과로도 확인할 수 있었다.

고온, 고압의 분위기 변화가 n-butanol 및 n-heptane 연료의 연소 특성에 미치는 영향 (Effect of High Temperature and Pressure Conditions on the Combustion Characteristics of n-butanol and n-heptane Fuel)

  • 임영찬;서현규
    • 한국분무공학회지
    • /
    • 제21권1호
    • /
    • pp.29-36
    • /
    • 2016
  • The effect of high ambient temperature and pressure conditions on the combustion performance of n-butanol, n-heptane and its mixing fuel (BH 20) were studied in this work. To reveal this, the closed homogeneous reactor model applied and 1000-1200 K of the initial temperature, 20-30 atm of initial pressure and 1.0 of equivalence ratio were set to numerical analysis. It was found that the results of combustion temperature was increased and the ignition delay was decreased when the ambient conditions were elevated since the combustion reactivity increased at the high ambient conditions. On the contrary, under the low combustion temperature condition, the combustion pressure was more influenced by the ambient temperature in the same ambient conditions. In addition, the total mass and the mass density of tested fuels were influenced by the ambient pressure and temperature. Also, soot generation of mixing fuel was decreased than n-heptane fuel due to the oxygen content of n-butanol fuel.

가솔린 기관(機關)의 혼합기(混合氣) 성분(成分)이 출력(出力)에 미치는 영향(影響) (점화지연(点火遲延) 및 연소(燃燒) 기간(期間)에 미치는 영향(影響)) (The Effect of Mixture Component in a Gasoline Engine on Output (The Effect of Ignition Delay and Combustion Period))

  • 송재익
    • 한국분무공학회지
    • /
    • 제3권1호
    • /
    • pp.19-26
    • /
    • 1998
  • The effect of mixture component makes a nelay time and a long total combustion period $\tau_{p\;max}$. The flame propagation delay $\tau_{df}$ was determined by the record of current ion. The pressure release delay $\tau_{dp}$ and $\tau_{p\;max}$ were determined by the indicated pressure diagram in constant volume of the combustion chamber. The results are as follows: 1) The ignition delay $\tau_t$ time takes the minimum value around $\Phi=1.15$. 2) $\tau_{df}$ and $\tau_t$ time increased according to the increases of the concentrated dilution gases, because the adiabatic flame temperature decreased due to the increases of the heat capacity. But dilution gases have little effect on flame nucleus formation delay 3) The relation between $\tau_t$ time and reciprocal laminar burning velocity is almost linear. 4) The increase of the propagation length is accompanied with increased ratio of the $\tau_{df},\;\tau_{dp},\;\tau_{t},\;\tau_{p\;max}$.

  • PDF

승용 및 하이브리드 자동차 온실가스 배출특성 연구 (A study on Greenhouse gas Emission Characteristics of Conventional Passenger and Hybrid Electric Vehicles)

  • 임윤성;문선희;정택호;이종태;동종인
    • 한국분무공학회지
    • /
    • 제25권1호
    • /
    • pp.34-39
    • /
    • 2020
  • Automotive manufacturers are applying technologies for greenhouse gas reduction such as vehicle weight reduction, engine downsizing, direct injection technology, variable valves and transmission performance improvement to achieve the targets for enhanced greenhouse gas and fuel consumption efficiency. In this paper, compared and analyzed greenhouse emissions according to engine capacity, engine displacement, curb weight and sales volume of hybrid and internal combustion engine passenger vehicles. Hybrid emit 32~39% less greenhouse gas than internal combustion engines through the combined mode test method. Hybrid electric vehicle's curb weight was about 7% heavier on average for the same engine displacement, while greenhouse gas was about 36% lower. It was confirmed that in order to reduce the emission of pollutants of greenhouse gases as well as the air pollutants, it is necessary to expand the supply of eco-friendly vehicles.