• Title/Summary/Keyword: Spore Production

Search Result 181, Processing Time 0.026 seconds

Biological Control of Garlic Blue Mold using Pantoea agglomerans S59-4 (Pantoea agglomerans S59-4를 이용한 마늘 푸른곰팡이병의 생물학적 방제)

  • Kim, Yong-Ki;Hong, Sung-Jun;Jee, Hyung-Jin;Park, Jong-Ho;Han, Eun-Jung;Park, Kyung-Seok;Lee, Sang-Yeob;Lee, Seong-Don
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.2
    • /
    • pp.148-156
    • /
    • 2010
  • S59-4 isolate was evaluated as a potential biocontrol agent using in vivo wounded garlic bulb assay. When the spore suspension ($10^5$ spores/$m\ell$) of Penicillium hirsutum was co-inoculated with cell suspension of S59-4 isolate on wounded garlics, the isolate showed high suppressive effect to disease development. The isolate was identified as Pantoea agglomerans S59-4(Pa59-4) through Biolog system. Furthermore, soaking garlic bulbs in the suspension of Pa59-4 significantly reduced garlic decay caused by P. hirsutum. The optimal concentration of Pa59-4 for controlling garlic blue mold was $10^7\sim10^8$ cfu/$m\ell$. And suppressive effect of Pa59-4 on garlic storage decay reduced as inoculation concentration of Penicillium hirsutum increased. In addition in order to investigate population dynamics of Pa59-4 on application site of garlic cloves, two antibiotic markers, pimaricin and vancomycin were selected. Bacterial density of Pa59-4 on the wounded garlic cloves increased continuously both under room temperature condition and low temperature condition until 30days after application of Pa59-4, meanwhile that of Pa59-4 on intact garlic cloves increased until 15days after application of Pa59-4 and thereafter decreased continuously. Two culture media for mass-production of Pa59-4, LB medium and TSB medium, were selected. By-product of bio-fungicide formulated by mixing white carbon and bacterial suspension of Pa59-4 suppressed by 40 to 50% garlic blue mold. Above results suggest that Pa59-4 be a promising control agent against garlic blue mold.

Strain Improvement of Penicillium verruculosum for High Cellulase Production by Induced Mutation (섬유소분해효소 생산증진을 위한 Penicillium verruculosum의 균주개량)

  • 정기철
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.6
    • /
    • pp.388-395
    • /
    • 1987
  • In order to obtain a regulatory mutant strain with high cellulase activity, a newly isolated Penicillium verrculosum, strain F-3 was used as parental strain since it was proved to be an efficient cellulase producer. A number of experiments were conducted to determine the optimum conditions to in-duce mutagenesis and isolate the desirable mutant strains. Out of several restriction compounds tested, 1.5% oxgall was found to be most effective to restrict the colony size by suppressing overgrowth. Derepression of catabolites was employed as a criterion in selecting mutant strains with high cellulase productivity. Production of cellulase by Penicillium venculosum F-3 was suppressed when cultured on the media with more than 1% of glucose or glycerol. It was found that either irradiation with UV light for 19 mins or treatment with nitrosoguanidine at 200$\mu\textrm{g}$/m1 for 60 mins, induced mutagenesis at desired level, when the survival rate of the spore was 0.2% and 48%, respectively. Three mutant strains of F-3, UV-9, UV-10, and NTG-3 that had the highest cellulase productivity were finally selected, based on filter paper degradation rate, size of clearing zone on the screening plate and cellulase activity in the medium containing cellulose powder. When the mutant strains were compared with parental strain F-3, on the KC-M-W medium containing cellulose powder, the filter paper activities of UV-9, UV-10, and NTG-3 were increased by 34%, 55%, and 41%, respectively. However, the assimilation of cellobiose octaacetate by UV-9 or NTG-3 was markedly reduced. When the mutant UV-10 was grown on cellobiose octaacetate medium (CCA-4) in shaking flasks, the cellulase activities of the mutant increased by 20 to 50% compared to the parental strain. Excreation of soluble protein from the mutant also elevated up to 30%. The mutant also constitutively produced both CMCase and $\beta$-glucosidase, though at relatively low level, in the presence of glucose or cellobiose as carbon sources.

  • PDF

Diatom Assemblages and its Paleoceanography of the Holocene Glaciomarine Sediments from the Western Antarctic Peninsula shelf, Antarctica (남극반도 서 대륙붕의 빙해양 퇴적물의 규조군집 특성과 고해양 변화)

  • Shin, Yu-Na;Kim, Yea-Dong;Kang, Cheon-Yoon;Yoon, Ho-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.152-163
    • /
    • 2001
  • Based upon the sedimentological, geochemical and micropaleontological analyses of two sediment cores from the Antarctic Peninsula (AP), three distinct lithological units can be recognized: (1) ice-proximal an/or ice-distal diamictons in the lower part of the cores, accumulated just seaward of the grounding line of the ice shlef until 11,000 yrs BP; (2) diatomaceous mud between 6,000 and 2,500 yrs BP in the middle part, resulted from a large influx of organic materials by enhanced production of open marine condition; (3) diatomaceous sandy mud since 2,500 yrs BP, characterized by an increase in sand content and decrease in TOC and diatom abundance in the lower layers, which reflects the formation of more extensive and seasonally persistent sea ice. Based on the C-14 radiocarbon dating, the sub-ice shlef deposition of the diamicton on the AP western shelf completed around 11,000 yrs BP. Colder condition was reinstated between 12,800 and 11,600 BP with a dropin TOC content and diatom abundance, which is coincident with the Younger Dryas event in the North Atlanticregion. At this time, the ice shelf, that is now absent in the study area, appears to advance as evidenced by an abrupt increase in sea-ice taxa. A climatic optimum is recognized between 9,000 and 2,500 BP, coincide witha mid-Holocene climatic optimum 'Hypsithermal Warm Period' from the other Antarctic sites. During this time, diatomaceous mud accumulated by a large influx of organic materials by enhanced production occurred in openmarine condition. Around 2,500 BP, diatomaceous sandy mud reflects the formation of more extensive and seasonally persistent sea ice, coincident with the onset of the Neoglacial in the Antarctic. Our results provide evidence of climatic change from the Antarctic Peninsula`s western shelf that helps in determining the existence and timing of Holocene milennial-scale climatic events in the Southern Hemisphere.

  • PDF

Growth stage-specific changes in fruiting body characteristics of Pleurotus spp. (생육시기에 따른 느타리류의 자실체 특성 변화)

  • Jae-San Ryu;Kyeong Sook Na
    • Journal of Mushroom
    • /
    • v.21 no.4
    • /
    • pp.254-260
    • /
    • 2023
  • The characteristics and spore production of Gonji7ho, Bunhong, and Sunjung fruiting bodies were assessed at different growth stages. The shape of the Pleurotus species fruiting body starts out short and small, then takes on a typical mushroom shape as it grows. Gonji7ho has a long stalk, Bunhong has a short stalk and a wide cap, and Sunjung's cap and stalk dimensions are intermediate. Each variety displayed deep color at the beginning of growth but became steadily lighter with continued growth. The shape of the linkage between the mushroom stalk and cap changed from an initial central position to a lateral position after the growing stage. Gonji7ho cap diameter increased 7-fold from 15.5 mm (5 days of growth) to 37.9 mm (9 days of growth). Growth rates for each growth day measured using the growth percentage of the previous day were 285.5% (5 → 6th day), 182.2% (6 → 7th day), 129.4% (7 → 8th day), and 103.8% (8 → 9th day). This trend was also observed in Bunhong and Sunjung, but Bunhong's growth rate was more rapid (4.9 fold on day 6, 2.7 fold on day 7) and continued to increase through day 9. Harvest yield, which is of greatest interest to farmers, displayed a similar trend spanning the growth period, as did cap diameter. Gonji7ho harvest yield increased rapidly until day 7 of growth (more than 177%), then growth slowed down beginning around day 8, and further decreased on day 9 (98%). Similar trends were observed in Bunhong and Sunjung. Bunhong showed characteristic rapid growth in harvest yield (4.9 fold compared to the previous day on day 6 and 2.7 fold on day 7), and the increase continued through day 9. A decrease in mushroom harvest yield commonly seen in the late growth stage is thought to be due to the death of some mushrooms and decomposition of cap tissue. Basidiospore content increased with number of growth days but decreased after day 8. Gonji7ho yielded the highest production on day 7 of growth, coinciding with harvest time, with 209,000,000 spores. This trend was also observed in Bunhong and Sunjung. These results will provide researchers with basal data and guide farmers in selecting the optimal harvest day.

Development of an Efficient Method of Screening for Watermelon Plants Resistant to Fusarium oxysporum f. sp. niveum (수박 덩굴쪼김병에 대한 효율적인 저항성 검정법 개발)

  • Jo, Eun Ju;Lee, Ji Hyun;Choi, Yong Ho;Kim, Jin-Cheol;Choi, Gyung Ja
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.409-419
    • /
    • 2015
  • This study was conducted to establish an efficient screening method for watermelon plants resistant to Fusarium wilt (FW), which is caused by Fusarium oxysporum f. sp. niveum (Fon). An HA isolate was prepared from a wilted watermelon plant in Haman-gun and identified as F. oxysporum f. sp. niveum based on morphological characteristics, molecular analyses of ITS (internal transcribed spacer) and TEF (translation elongation factor $1{\alpha}$) sequences, and host specificity on cucurbits including watermelon, melon, oriental melon, and cucumber. The assay for disease response of watermelon differentials indicated that the HA isolate was race 0. Among seven liquid media tested, the highest amount of Fon spores was produced from V8-juice broth, which was selected as a medium for mass production of Fon. The disease assay for 21 watermelon and 11 watermelon-rootstock cultivars demonstrated that 20 watermelon cultivars except for 'Soknoranggul' were susceptible; 'Soknoranggul' was moderately resistant. All the tested rootstock cultivars were highly resistant to the HA isolate. The evaluation of disease development depending on various conditions suggested that an efficient screening method for FW resistance in watermelon plants is to dip the roots of 10-day-old seedlings in spore suspension of $1.0{\times}10^5-1.0{\times}10^6conidia{\cdot}mL^{-1}$ for 30 min., to transplant the seedlings to plastic pots with a fertilized soil, and then to cultivate the plants at $25^{\circ}C$ for 3 weeks.

Quantitative Analysis of Microbiological Profiles of Retailed White Rice (시판 백미의 미생물학적 프로파일 정량분석)

  • Kim, Min-Ju;Kim, Byung-Hoon;Park, Sung-Soo;Park, Sung-Hee;Kim, Dong-Ho;Kim, Keun-Sung
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.198-202
    • /
    • 2011
  • Rice has been the most important staple food in everyday meals of Korean people for thousands of years. Nowadays, it is getting increasingly used as flour ingredients in a variety of processed foods, so that it is consumed in more diversified ways. As a consequence, production volume of rice flour to manufacture rice cakes, noodles, breads, or confectioneries is recently getting increased in Korea. But there are not sufficient research outcomes to guarantee Korean consumers microbiological qualities of rice flour as well as rice. As a preliminary experiment, therefore, the microbiological profiles (aerobic mesophilic bacteria (AMB), spore-forming aerobic bacteria (SAB), lactic acid bacteria (LAB), yeasts and molds (YM), and Escherichia coli and coliforms) have been monitored for nine retailed white rice samples in this study. AMB counts ranged $10^2-10^6$ CFU/g for all the nine white rice samples. All the nine rice samples have SAB counts within a narrow range $(1.0{\times}10^2-2.5{\times}10^3$ CFU/g). LAB was detected in two white rice samples ($4.0{\times}10^2$ and $3.7{\times}10^3$ CFU/g), YM was detected in one white rice sample ($2.0{\times}10^2$ CFU/g) only. E. coli was not detected from all the nine samples. Coliforms were detected in one white rice sample ($4.1{\times}10$ CFU/g) only. All the rice samples were conclusively considered to have various microorganisms, though most of them are harmless and some, such as coliforms, may be harmful.

DISTRIBUTION AND PHYSIOLOGICAL CHARACTERISTICS OF BACILLUS CEREUS IN RICE AND RICE PRODUCTS (미반류에 있어서 Bacillus cereus균의 분포와 생리적특성에 관한 연구)

  • LEE Myeong-Sook;CHANG Dong-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.163-171
    • /
    • 1980
  • Recently, Bacillus has been identified as one of food poisoning bacteria especially in products of cereal foods in foreign countries. Therefore, the quantitative distribution of Bacillus cereus in market foods, its physiological characteristics, growth rate by temperature and heat resistance of its spore were examined. Thirty two samples of cooked rice, 20 samples of kimbab(cooked rice rolled with laver), 23 samples of rice cake, 13 samples of rice ana 13 samples of barley were collected from restaurents and food stores in Busan, Korea during the period from May to November in 1980. Forty samples of 101 samples submitted to the test appeared positive for Bacillus cereus showing abut $40\%$ in detection ratio. Detection ratio of Bacillus cereus was higher than $50\%$ in barley and rice, and about $30\%$ in rice products. Average Bacillus cereus content of in the samples was $2.6\times10^6/g$ in cooked rice, $2.3\times10^6/g$in kimbab, $4.9\times10^4/g$ in rice cake while that in rice and barley was about $10^3/g$. The result of biochemical tests of the bacterium was $100\%$ positive in catalase, egg yolk reaction, gelatin hydrolysis and glucose fermentation, $100\%$ negative in xylose, arabinose and mannitol oxidation, about $90\%$ positive in acetoin production, $80.0\%$ positive in nitrate reduction and citrate utilization and $55.0\%$ positive in starch hydrolysis test. Isolation ratio of Bacillus ceresus which showed haemolysis positive and starch hydrolysis negative results, was about $38\%$ in 40 strains examined. It is known that those strains has a close relation to food poisoning accident. Growth rate and generation time of Bacillus cereus isolated from the cooked rice were $0.34hr^{-1},\;2.02hr\;at\;20^{\circ}C,\;0.73hr^{-1},\;0.95hr\;at\;30^{\circ}C\;and\;0.49hr^{-1},\;1.44\;hr\;at\;40^{\circ}C$ respectively. Heat resistance value of Bacillus cereus spores suspended in phosphate buffer solution was $D_{90}=29.0min,\;D_{95}=8.7min,\;D_{98}=3.7\;min\;and\;D_{101}=2.3\;min(z=10.5)$.

  • PDF

Studies on the Iron Component of Soy Sauce, Bean Paste and Red Pepper Paste -Part I. Iron Content of Soy Sauce- (장류(醬類)의 철분(鐵分)에 관(關)한 연구(硏究) - 제1보(第一報). 간장중의 철분함량(鐵分含量) -)

  • Yoo, Hai-Yul;Park, Yoon-Joong;Lee, Suk-Kun;Son, Cheon-Bae
    • Applied Biological Chemistry
    • /
    • v.22 no.3
    • /
    • pp.160-165
    • /
    • 1979
  • This study was carried out to investigate effects of iron content on the quality of soy sauce, bean paste and red pepper paste, and to elucidate the origin of iron and change of the contents during production processes. For the first step, the iron contents in commercial soy sauce and changes of the contents during brewing process were determined. The results obtained were as follows. 1, Iron contents of raw materials were 108 ppm in soy bean, 133ppm in defatted soy bean, 79 ppm in wheat, 5 ppm in sodium chloride, 58 ppm in seed koji, 300-2000 ppm in spore of Aspergillus oryzae, 240 ppm in wheat gluten, 20 ppm in sodium carbonate (above figures were of dry weight basis), 6 ppm in hydrochloric acid, 18 ppm in caramel and 0.3ppm in brewing water respectively. 2, Iron contents in koji were 200-240 ppm (as dry weight basis) and increased, more or less, in progress of koji-making period. 3. Iron contents in the mashes during fermentation were 40 rpm after 1 month, 43-47 ppm after 3 months and 49-62ppm after 6 months. 4. In chemical soy sauce, the iron content was 159 ppm after hydrolysis of wheat gluten with hydrochloric acid, and 184 ppm after neutralization. 5. Higher iron contents were detected both in fermented and chemical soy sauce when the concentration of total nitrogen increased, but the levels were higher in chemical soy sauce than in fermented one at the same concentration of total nitrogen. 6. In the case of fermented soy sauce, the iron content in the filtrate was decreased by press-filtration, but no significant change was found between before and after heat-sterilization. 7. Iron contents in commercial soy sauce were varied with the producers, however, the average value was 62.7 ppm as calculated as 1.0 percent of total nitrogen. And the average level of iron in home-made soy sauce produced by conventional method was 37.68 ppm.

  • PDF

Development of Efficient Screening Methods for Melon Plants Resistant to Fusarium oxysporum f. sp. melonis (멜론 덩굴쪼김병에 대한 효율적인 저항성 검정법 개발)

  • Lee, Won Jeong;Lee, Ji Hyun;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Heung Tae;Choi, Gyung Ja
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.70-82
    • /
    • 2015
  • This study was conducted to establish an efficient screening system to identify melon resistant to Fusarium oxysporum f. sp. melonis. F. oyxsporum f. sp. melonis GR was isolated from infected melon plants collected at Goryeong and identified as F. oxysporum f. sp. melonis based on morphological characteristics, molecular analyses, and host-specificity tests on cucurbits including melon, oriental melon, cucumber, and watermelon. In addition, the GR isolate was determined as race 1 based on resistance responses of melon differentials to the fungus. To select optimized medium for mass production of inoculum of F. oxysporum f. sp. melonis GR, six media were tested. The fungus produced the most spores (microconidia) in V8-juice broth. Resistance degrees to the GR isolate of 22 commercial melon cultivars and 6 rootstocks for melon plants were investigated. All tested rootstocks showed no symptoms of Fusarium wilt. Among the tested melon cultivars, only three cultivars were susceptible and the other cultivars displayed moderate to high resistance to the GR isolate. For further study, six melon cultivars (Redqueen, Summercool, Superseji, Asiapapaya, Eolukpapaya, and Asiahwanggeum) showing different degrees of resistance to the fungus were selected. The development of Fusarium wilt on the cultivars was tested according to several conditions such as plant growth stage, root wounding, dipping period of roots in spore suspension, inoculum concentration, and incubation temperature to develop the disease. On the basis of the test results, we suggest that an efficient screening method for melon plants resistant to F. oxysporum f. sp. melonis is to remove soil from roots of seven-day-old melon seedlings, to dip the seedlings without cutting in s pore s uspension of $3{\times}10^5conidia/mL$ for 30 min, to transplant the inoculated seedlings to plastic pots with horticulture nursery media, and then to cultivate the plants in a growth room at 25 to $28^{\circ}C$ for about 3 weeks with 12-hour light per day.

Effectiveness of controlled atmosphere container on the freshness of exported PMRsupia melon (CA 컨테이너를 이용한 수출 멜론의 선도유지 효과)

  • Haejo Yang;Min-Sun Chang;Puehee Park;Hyang Lan Eum;Jae-Han Cho;Ji Weon Choi;Sooyeon Lim;Yeo Eun Yun;Han Ryul Choi;Me-Hea Park;Yoonpyo Hong;Ji Hyun Lee
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.822-832
    • /
    • 2023
  • This study investigates the effectiveness of CA (controlled atmosphere) containers in maintaining the freshness of exported melons. The melons were harvested on June 5, 2023, in the Yeongam area of Jeollanam-do, Korea. The CA container was loaded with melon samples packed in an export box. The temperature inside the container was set at 4℃, while the gas composition was set at 5% oxygen, 12% carbon dioxide, and 83% nintrogen. Following two weeks of simulated transportation, quality analysis was conducted at 10℃. The melons were inoculated with spore suspensions, and the decay rate was determined to investigate the effect of the gas composition inside the CA container on suppressing the occurrence of Penicillium oxalicum in melons. The results were compared with a Reefer container set at the same temperature. The samples transported in the CA container exhibited lower weight loss. The melon pulp softening, respiration rate, and ethylene production were slower using the CA container. Moreover, the decay rate during the distribution period in the CA container was lower than in the Reefer container. In contrast, the firmness of melons transported in the Reefer container decreased significantly (from 9.03N to 5.18N) immediately after transportation. The soluble solid content (SSC) of melons transported in the Reefer container also decreased rapidly. The results suggested that the CA container is the optimal export container for maintaining the freshness of melons.