• Title/Summary/Keyword: Split Process

Search Result 301, Processing Time 0.03 seconds

2D Two-Way Parabolic Equation Algorithm Using Successive Single Scattering Approach (연속적인 단일 산란 근사를 이용한 2차원 양방향 포물선 방정식 알고리즘)

  • Lee, Keun-Hwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.7
    • /
    • pp.339-345
    • /
    • 2006
  • We suggest new 2D two-way Parabolic equation algorithm for multiple scattering. Our method is based on the successive performance of the single scattering approach. First. as the single scattering algorithm, the reflected and transmitted fields are calculated at the vertical interface of a range independent sector. Then. the reflected field is saved and the transmitted field Propagated to the next vertical interface with the split-step Pade method. After one step ends, the same Process is repeatedly performed with the change of the Propagation direction until the reflected field at the vertical interface is close to zero. Final incoming and outgoing fields are obtained as the sum of the wave fields obtained for each step. Our algorithm is relatively simple for the numerical implementation and requires less computational resources than the existing algorithm for multiple scattering

A Study on Temperature Profile and Residual Stress in Pipeline Repair Welding Using Sleeve (슬리브덮개를 이용한 배관 보수용접시 온도분포와 잔류응력에 관한 연구)

  • 김영표;김형식;김우식;홍성호;방인완;오규환
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.95-105
    • /
    • 1996
  • Korea Gas Corporation has operated high pressure gas transmission line of about 600 kilometers and, therefore, a series of repair welding processes are required in order to cope with external defects such as dent, gouge, cracking usually due to mechanical attacks. Most of gas pipelines repair processes are performed after completely venting remaining gas. However, in some case, though it is very unusual, repairs require without venting gas. For instance, this case is that damaged pipeline is remedied with split sleeve by welding. In this paper, in an effort to confirm a safe application of the split sleeve welding, residual stress, strain and temperature distributions are evaluated by computer simulation and experiments. The results obtained are as follows : 1) Computer modelling is supposed to be reasonable because microstructure changes due to welding is simulated coincidently as compare to that of real condition. 2) The maximal temperature on inside surface of pipeline is 50$0^{\circ}C$ for the repair welding process. 3) The amount of residual stress is estimated as the stress corresponding to 0.8% strain. 4) The repair process employed is determined to be technically preferable because of its avoiding cracks and fractures in the course of welding.

  • PDF

Dynamics of a Bose-Einstein Condensate on Changing Speeds of an Atomchip Trap Potential

  • Kim, Seung Jin;Noh, Jae June;Kim, Min Seok;Lee, Jin Seung;Yu, Hoon;Kim, Jung Bog
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.633-638
    • /
    • 2014
  • We report experimental behaviors of condensed $^{87}Rb$ atoms responding to changes in the trap potential of the atomchip. The two-types of adiabatic and non-adiabatic overall changes were implemented by changing the ramp-down speed of the chip-wire current, which can dominantly modify the one-axis magnetic field gradient. Under the adiabatic process, a pure condensate stayed in the initial spin state and collectively oscillated with both monopole and dipole modes, while an atomic cloud above the critical temperature exhibited sound waves in a dense ultracold gas. On the other hand, Bose-Einstein condensate atoms with non-adiabatic perturbation were split into spatially different positions by spin states through spin-flip. We investigated the split ratio among spin states depending on final evaporation frequency. Potential changes, of course, cause collective oscillations regardless of the changing process.

Method of Generating Shape Feature Vector Using Infrared Video for Night Pedestrian Recognition (야간 보행자인식을 위한 적외선 동영상의 형상특징벡터 생성기법)

  • Song, Byeong Tak;Kim, Tai Suk
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.7
    • /
    • pp.755-763
    • /
    • 2018
  • In this paper, for recognize a night pedestrian from an infrared video, a new method differentiated from the existing feature vector is proposed and experimented. The new approach focuses on the shape feature vector of the structure and shape of the pedestrian image divided by the human body seven split ratio. The pedestrian images are divided into 7 square blocks from the still image of the preprocessing process. And to reduce the dimension, the square block is converted into a mosaic block. The scalar and direction of the shape feature vector is calculated by the brightness and position of the element in the mosaic. For practicality of infrared video system, the proposed method simplifies the data to be processed by reducing the amount of data in the preprocessing in order to continuously batch process the entire system in real time. Through the experiments, we verified the validity of the proposed shape feature vector. In comparison to the existing method, we propose a new shape feature vector generation method as the feature vector for night pedestrian recognition.

A Study on the Adhesive Condition of the Nonwoven Fabrics in Sewing of the Leather (피혁봉재에 있어서 부직포 접착심지의 접착방법에 관한 연구)

  • Kim Young Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.5 no.2
    • /
    • pp.35-40
    • /
    • 1981
  • This study aims at finding appropriate adhesive conditions with special regard the material of 'fusible padding cloth inter ling' was frequently used for leather. As for leather material, pig suede, sheep suede were selected and drum dyed, cow split, napa have also been used. Mixed spinning non-woven fabric (polyester $50\%$, nylon $50\%$) were used as for padding cloth. Experimental appearance has been observed under the following adhesive conditions: Temperature of press were devided four levers; $120^{\circ}C$, $130^{\circ}C$, $140^{\circ}C$, $150^{\circ}C$, respectively. Adhesive time has been limited 5, 10, 15 second each. And the pressure has been conditioned as $0.2kg/cm^2$ continuously. After all this experiment, it was discovered that the material which had long contact with low temperature conditions has similar adhesive power to material that has short contact with high temperature conditions. There is a great difference according to the leather's dying process, the finishing method of the cloth, and the part of leather surface. The best condition for suede are $140^{\circ}C$, $150^{\circ}C$, at 10 seconds. and for D/D, NAPA, $130^{\circ}C$, at 10 seconds. Although the conditions of $150^{\circ}C$, at 15 seconds was possible for split, the process time can be shortened according to the increase of temperature.

  • PDF

Spatial Statistic Data Release Based on Differential Privacy

  • Cai, Sujin;Lyu, Xin;Ban, Duohan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5244-5259
    • /
    • 2019
  • With the continuous development of LBS (Location Based Service) applications, privacy protection has become an urgent problem to be solved. Differential privacy technology is based on strict mathematical theory that provides strong privacy guarantees where it supposes that the attacker has the worst-case background knowledge and that knowledge has been applied to different research directions such as data query, release, and mining. The difficulty of this research is how to ensure data availability while protecting privacy. Spatial multidimensional data are usually released by partitioning the domain into disjointed subsets, then generating a hierarchical index. The traditional data-dependent partition methods need to allocate a part of the privacy budgets for the partitioning process and split the budget among all the steps, which is inefficient. To address such issues, a novel two-step partition algorithm is proposed. First, we partition the original dataset into fixed grids, inject noise and synthesize a dataset according to the noisy count. Second, we perform IH-Tree (Improved H-Tree) partition on the synthetic dataset and use the resulting partition keys to split the original dataset. The algorithm can save the privacy budget allocated to the partitioning process and obtain a more accurate release. The algorithm has been tested on three real-world datasets and compares the accuracy with the state-of-the-art algorithms. The experimental results show that the relative errors of the range query are considerably reduced, especially on the large scale dataset.

Analysis of Laser Heat Distribution in Al-Cu Welding (알루미늄 구리 용접에서 레이저 열원 분포 분석)

  • Choi, Hae Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.1-7
    • /
    • 2021
  • A computer simulation was performed to study the effectiveness of temperature on the type of laser heat source in the context of the heterogeneous welding of aluminum and copper materials. Three different types of heat sources were used in the computer simulation: 1) Single Beam Straight Scan, 2) Single Beam Wobble Scan, and 3) Dual Beam Straight Scan. Among these sources, dual beam straight scan was found to be the most effective from the viewpoint of heat source control. Because the difference between the melting temperatures of copper and aluminum is approximately 400℃, a clear separation of heating temperature was required, and the dual beam straight scan provided superior controllability in this regard. When using the dual beam, the temperature of the 90:10 split was considerably easier to control than that of the 50:50 split. The optimal offset was calculated to be 4 mm off to the copper side, where the melting temperature and thermal conductivity were higher. In this manner, computer simulation was effectively used for determining the optimal laser beam hear source control without performing an actual laser welding experiment.

Minimization of Energy Consumption for Amine Based CO2 Capture Process by Process Modification

  • Sultan, Haider;Bhatti, Umair H.;Cho, Jin Soo;Park, Sung Youl;Baek, Il Hyun;Nam, Sungchan
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.13-18
    • /
    • 2019
  • The high energy penalty in amine-based post-combustion CO2 capture process is hampering its industrial scale application. An advanced process is designed by intensive heat integration within the conventional process to reduce the stripper duty. The study presents the technical feasibility for stripper duty reduction by intensive heat integration in CO2 capture process. A rigorous rate-based model has been used in Aspen Plus® to simulate conventional and advanced process for a 300 MW coal-based power plant. Several design and operational parameters like split ratio, stripper inter-heater location and flowrate were studied to find the optimum values. The results show that advanced configuration with heat integration can reduces the stripper heat by 14%.

Splitting and Merging Algorithm Based on Local Statistics of Sub-Regions in Document Image

  • Thapaliya, Kiran;Park, Il-Cheol;Kwon, Goo-Rak
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.487-490
    • /
    • 2011
  • This paper presents splitting and merging algorithm based on adaptive thresholding. The algorithm first divides the image into blocks, and then compares each block using the calculated thresholding value. The blocks which are same are merged using the certain threshold value and different blocks are split unless it satisfies the threshold value. When the block has been merged, maximum and minimum block sizes are determined then the average block size is determined. After the average block size is determined the average intensity and standard deviation of average block is calculated. The process of thresholding is applied to binarize the image. Finally, the experimental results show that the proposed method distinguishes clearly the background with text in the document image.

Enhancing Photon Utilization Efficiency for Astaxanthin Production from Haematococcus lacustris Using a Split-Column Photobioreactor

  • Kim, Z-Hun;Park, Hanwool;Lee, Ho-Sang;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1285-1289
    • /
    • 2016
  • A split-column photobioreactor (SC-PBR), consisting of two bubble columns with different sizes, was developed to enhance the photon utilization efficiency in an astaxanthin production process from Haematococcus lacustris. Among the two columns, only the smaller column of SC-PBR was illuminated. Astaxanthin productivities and photon efficiencies of the SC-PBRs were compared with a standard bubble-column PBR (BC-PBR). Astaxanthin productivity of SC-PBR was improved by 28%, and the photon utilization efficiencies were 28-366% higher than the original BC-PBR. The results clearly show that the effective light regime of SC-PBR could enhance the production of astaxanthin.