• 제목/요약/키워드: Spline regression

검색결과 68건 처리시간 0.017초

벌점 스플라인 회귀모형에서의 이상치 탐지방법 (An Outlier Detection Method in Penalized Spline Regression Models)

  • 서한손;송지은;윤민
    • 응용통계연구
    • /
    • 제26권4호
    • /
    • pp.687-696
    • /
    • 2013
  • 이상치가 존재하는 경우 모형 적합의 결과가 왜곡될 수 있기 때문에 이상치 탐색은 데이터분석에 있어서 매우 중요하다. 이상치 탐지 방법은 많은 학자들에 의해 연구되어 왔다. 본 논문에서는 Hadi와 Simonoff (1993)가 제안한 직접적 이상치 탐지 방법을 벌점 스플라인 회귀모형에 적용하여 이상치를 탐지하는 과정을 제안하며 모의실험과 실제 데이터에 적용을 통하여 스플라인 회귀모형, 강건 벌점 스플라인 회귀모형과 효율성을 비교한다.

Pliable regression spline estimator using auxiliary variables

  • Oh, Jae-Kwon;Jhong, Jae-Hwan
    • Communications for Statistical Applications and Methods
    • /
    • 제28권5호
    • /
    • pp.537-551
    • /
    • 2021
  • We conducted a study on a regression spline estimator with a few pre-specified auxiliary variables. For the implementation of the proposed estimators, we adapted a coordinate descent algorithm. This was implemented by considering a structure of the sum of the residuals squared objective function determined by the B-spline and the auxiliary coefficients. We also considered an efficient stepwise knot selection algorithm based on the Bayesian information criterion. This was to adaptively select smoothly functioning estimator data. Numerical studies using both simulated and real data sets were conducted to illustrate the proposed method's performance. An R software package psav is available.

Smoothing Parameter Selection Using Multifold Cross-Validation in Smoothing Spline Regressions

  • Hong, Changkon;Kim, Choongrak;Yoon, Misuk
    • Communications for Statistical Applications and Methods
    • /
    • 제5권2호
    • /
    • pp.277-285
    • /
    • 1998
  • The smoothing parameter $\lambda$ in smoothing spline regression is usually selected by minimizing cross-validation (CV) or generalized cross-validation (GCV). But, simple CV or GCV is poor candidate for estimating prediction error. We defined MGCV (Multifold Generalized Cross-validation) as a criterion for selecting smoothing parameter in smoothing spline regression. This is a version of cross-validation using $leave-\kappa-out$ method. Some numerical results comparing MGCV and GCV are done.

  • PDF

Diagnostic In Spline Regression Model With Heteroscedasticity

  • Lee, In-Suk;Jung, Won-Tae;Jeong, Hye-Jeong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제6권1호
    • /
    • pp.63-71
    • /
    • 1995
  • We have consider the study of local influence for smoothing parameter estimates in spline regression model with heteroscedasticity. Practically, generalized cross-validation does not work well in the presence of heteroscedasticity. Thus we have proposed the local influence measure for generalized cross-validation estimates when errors are heteroscedastic. And we have examined effects of diagnostic by above measures through Hyperinflation data.

  • PDF

Multivariate adaptive regression spline applied to friction capacity of driven piles in clay

  • Samui, Pijush
    • Geomechanics and Engineering
    • /
    • 제3권4호
    • /
    • pp.285-290
    • /
    • 2011
  • This article employs Multivariate Adaptive Regression Spline (MARS) for determination of friction capacity of driven piles in clay. MARS is non-parametric adaptive regression procedure. Pile length, pile diameter, effective vertical stress, and undrained shear strength are considered as input of MARS and the output of MARS is friction capacity. The developed MARS gives an equation for determination of $f_s$ of driven piles in clay. The results of the developed MARS have been compared with the Artificial Neural Network. This study shows that the developed MARS is a robust model for prediction of $f_s$ of driven piles in clay.

편스플라인 추정량의 편의에 대한 점근 정규성 (Asymptotics Normality for Bias fo Partial Spline Estimator)

  • 추인선;최재룡
    • 응용통계연구
    • /
    • 제13권2호
    • /
    • pp.371-381
    • /
    • 2000
  • 비모수 회귀모형에 있어서 평활스플라인에 대하여 언급하고, 그 간단한 성질을 다룬다. 선형회귀나 다항식회귀에서는 적합하기 나쁜 데이터가 많이 존재한다. 설명변수가 여러 개인 경우에 준모수 회귀모형은 하나 혹은 그 이상의 변수에 대해서는 비모수 함수를 다른 변수에 대하서는 선형함수를 적합시켜 그들의 가법성을 가정한 것이다. 준모수 회귀모형에 있어서 선형부분의 회귀계수의 추정량에 편의가 발생하고, 여기서는 그 편의에 대한 점근 정규성을 다룬다

  • PDF

Regression and Correlation Analysis via Dynamic Graphs

  • Kang, Hee Mo;Sim, Songyong
    • Communications for Statistical Applications and Methods
    • /
    • 제10권3호
    • /
    • pp.695-705
    • /
    • 2003
  • In this article, we propose a regression and correlation analysis via dynamic graphs and implement them in Java Web Start. For the polynomial relations between dependent and independent variables, dynamic graphics are implemented for both polynomial regression and spline estimates for an instant model selection. The results include basic statistics. They are available both as a web-based service and an application.

Estimation of Interval Censored Regression Spline Model with Variance Function

  • Joo, Yong-Sung;Lee, Keun-Baik;Jung, Hyeng-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권4호
    • /
    • pp.1247-1253
    • /
    • 2008
  • In this paper, we propose a interval censored regression spline model with a variance function (non-constant variance that depends on a predictor). Simulation studies show our estimates from MCECM algorithm are consistent, but biased when the sample size is small because of boundary effects. Also, we examined how the distribution of $x_i$ affects the converging speed of these consistent estimates.

  • PDF

Optimal Rates of Convergence for Tensor Spline Regression Estimators

  • Koo, Ja-Yong
    • Journal of the Korean Statistical Society
    • /
    • 제19권2호
    • /
    • pp.105-112
    • /
    • 1990
  • Let (X, Y) be a pair random variables and let f denote the regression function of the response Y on the measurement variable X. Let K(f) denote a derivative of f. The least squares method is used to obtain a tensor spline estimator $\hat{f}$ of f based on a random sample of size n from the distribution of (X, Y). Under some mild conditions, it is shown that $K(\hat{f})$ achieves the optimal rate of convergence for the estimation of K(f) in $L_2$ and $L_{\infty}$ norms.

  • PDF

다항 스플라인 회귀모형에서의 D-최적실험계획 (D-optimal design in polynomial spline regression)

  • 임용빈
    • 응용통계연구
    • /
    • 제4권2호
    • /
    • pp.171-178
    • /
    • 1991
  • 고정된 접목점을 갖는 다항 스플라인 회귀모형에 대한 D-최적실험 계획의 성질들이 연구되 었다. 또한 정규화된 B-스플라인을 이용하여 몇가지 경우에 대한 D-최적실험계획을 이론적 으로 구하였다. Kiefer-Wolfowitz 동치정리에 의하여 몇가지 모형에 대한 D-최적실험 계획 이 수리적인 방법에 의해 근사적으로 구하여 졌다.

  • PDF