• Title/Summary/Keyword: Spinning Process

Search Result 254, Processing Time 0.034 seconds

Studies on the Melting Characterization of Basalt and its Continuous Fiber Spinning (현무암의 용융특성과 연속섬유 방사 연구)

  • Park, Hye-Jung;Park, Sun-Min;Lee, Jae-Won;Roh, Gwang-Chul;Kim, Jae-Keun
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.43-49
    • /
    • 2010
  • Basaltic fiber was prepared by continuous spinning process from Jeju Pyosun raw basalt materials. First, for confirming the melting characterization of basalt, basalt raw material put into Pt crucible and melted up to $1550^{\circ}C$ then quenched by dropping it into water. After quenching, the optimum fiber spinning conditions were investigated by measurement and analysis of XRD, TMA, high temperature viscosity, high temperature conductivity and high temperature microscope. The optimum spinning temperature and viscosity for preparation of continuous filament fiber were $1264^{\circ}C$ and $10^{2.8}$ poise at $1264^{\circ}C$, respectively. Properties of prepared spinning fiber were confirmed by tensile strength, FE-SEM, heat resisting test and others. The tensile strength of fiber prepared by spinning conditions of the bushing temperature $1240^{\circ}C$ and winder speed 4600rpm was 3660MPa.

Modeling of the Flexible Disk Grinding Process: Part - I Model Developcment

  • Yoo, Song-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.302-306
    • /
    • 1993
  • In this study, a new model for flexible disk grinding process will be proposed. A grinding mechanism with a grinding disk attached to the rubber platen has been introduced. Since the spinning axis is fixed and only the disk is deflected with respect to this axis, earlier model is not adequate to represent this proces. A new dynamic process model includes an assumption that the disk is deflected locally around the middle of its radial span between the spinning axis and the disk tip instead of several continuous deflection points along the radial span of the disk. Detailed kinematic analysis is proposed as for the removed portion during the process. Cutting force comonent and depth of cut profile trend is compared with the measured result.

  • PDF

Physical Properties of E-glass Fiber According to Fiberizing Temperature (섬유화 온도 변화에 따른 E-glass fiber의 물리적 특성)

  • Lee, Ji-Sun;Lee, MiJai;Lim, Tae-Young;Lee, Youngjin;Jeon, Dae-Woo;Hyun, Soong-Keun;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.43-47
    • /
    • 2017
  • E (Electric) -glass fibers are the most widely used glass fibers, taking up 90 % of the long glass fiber market. However, very few papers have appeared on the physical characteristics of E-glass fibers and how they depend on the fiberizing temperature of fiber spinning. Glass fiber was fabricated via continuous spinning process using bulk E-glass. In order to fabricate the E-glass specimen, raw materials were put into a Pt crucible and melted at $1550^{\circ}C$ for 2hrs; mixture was then annealed at $621{\pm}10^{\circ}C$ for 2hrs. The transmittance and adaptable temperature for spinning of the bulk marble glass were characterized using a UV-visible spectrometer and a viscometer. Continuous spinning was carried out using direct melting spinning equipment as a function of the fiberizing temperature in the range of $1175{\sim}1250^{\circ}C$, while the winder speed was fixed at 500 rpm. Subsequently we investigated the physical properties of the E-glass fiber. The average diameter of the synthesized glass fiber was measured by optical microscope. The mechanical properties of the fiber were confirmed using a UTM (universal materials testing machine); the maximum tensile strength was measured and found to be $1843{\pm}449MPa$ at $1225^{\circ}C$.

A study on the process of tube end spinning by the upper bound method and the finite element method (상계해법과 유한요소법을 이용한 스피닝공정 해석에 관한 연구)

  • 김전형;홍성인;이정환;이영선
    • Transactions of Materials Processing
    • /
    • v.6 no.6
    • /
    • pp.517-526
    • /
    • 1997
  • The purpose of this study is to investigate changes in the wall thickness of tube sinking and working forces by the upper bound method and ABAQUS code. The independent variables are ; workpiece material, original wall thickness of tube, die angle, friction, and reduction of diameter. The results indicate that these five variables are factors of the increase in wall-thickness and working forces. Three variables, a inner tube wall angle and two angles of the velocity discontinuous surfaces, are optimized in this proposed velocity field by the upper bound method. In this method, we can estimate the working forces and final tube thicknesses similar to actual forming process. Optimum process variables which are obtained by upper bound method are used in ABAQUS pre-model.

  • PDF

Soft-magnetic Characteristics of Co-based Amorphous Powder Produced by Spinning Water Atomization Process (SWAP)

  • Otsuka, I.;Wada, K.;Watanabe, A.;Kadomura, T.;Yagi, M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.784-785
    • /
    • 2006
  • Co-based amorphous powder was produced by a new atomization process "Spinning Water Atomization Process (SWAP)", having rapid super-cooling rate. The composition of the alloys was ($(Co_{0.95}Fe_{0.05})_{1-x}Cr_x$)$_{75}Si_{15}B_{10}$ (x=0, 0.025, 0.05, 0.075). The powders became the amorphous state even if particle size was up to about $500{\mu}m$. The coercive force of powders was about 0.35 - 0.7 Oe. Furthermore, Co-based amorphous powder cores with glass binders were made by cold-pressing and sintering methods. The initial permeability of the core in the frequency range up to 100 kHz was about 110, and the core loss at 100 kHz for Bm = 0.1 T was $350kW/m^3$.

  • PDF

The Development of Biodegradable Fiber Tensile Tenacity and Elongation Prediction Model Considering Data Imbalance and Measurement Error (데이터 불균형과 측정 오차를 고려한 생분해성 섬유 인장 강신도 예측 모델 개발)

  • Se-Chan, Park;Deok-Yeop, Kim;Kang-Bok, Seo;Woo-Jin, Lee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.12
    • /
    • pp.489-498
    • /
    • 2022
  • Recently, the textile industry, which is labor-intensive, is attempting to reduce process costs and optimize quality through artificial intelligence. However, the fiber spinning process has a high cost for data collection and lacks a systematic data collection and processing system, so the amount of accumulated data is small. In addition, data imbalance occurs by preferentially collecting only data with changes in specific variables according to the purpose of fiber spinning, and there is an error even between samples collected under the same fiber spinning conditions due to difference in the measurement environment of physical properties. If these data characteristics are not taken into account and used for AI models, problems such as overfitting and performance degradation may occur. Therefore, in this paper, we propose an outlier handling technique and data augmentation technique considering the characteristics of the spinning process data. And, by comparing it with the existing outlier handling technique and data augmentation technique, it is shown that the proposed technique is more suitable for spinning process data. In addition, by comparing the original data and the data processed with the proposed method to various models, it is shown that the performance of the tensile tenacity and elongation prediction model is improved in the models using the proposed methods compared to the models not using the proposed methods.

Analysis of Non-uniform Tension Effect on Dynamic Characteristics of Spinning Circular Plates in the Wafer Cutting Machine (웨이퍼 가공기에서 회전 원판의 동특성에 미치는 불균일 장력의 영향 분석)

  • 임경화
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.324-330
    • /
    • 1998
  • The forced vibration analysis of the outer-clamped spinnig annular disk with arbitrary in-plane is formulated to investigate the influence of non-uniform tension on the cutting accuracy of wafer cutting machine. The arbitrary in-plan force along the outer edge of an annular plate is expressed as a Fourier series. Galerkin method and modal superposition method are employed to obtain the forced responses under the static force and the impulse force in astationary coordinate. Through qualitative and quantitative analyses, it can be found that forced and impulse responses are sensitive to the non-uniformity of in-plane force, which can bring a bad effect to the accuracy of wafer cutting process. Also, in case of a spinning disk with non-uniform in-plane force, critical speed is required to define in a different way, compared with conventional definition in axi-symmetrical spinning disk.

  • PDF

A Study on Gas-Liquid Reaction Intensification by Using Rotating Flow (회전유동을 이용한 기체-액체 반응 촉진 기술 연구)

  • Jun Sang Park
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.45-54
    • /
    • 2023
  • In the present study, we propose new type of a spinning disk reactor(SDR) with high performance and very convenient structure to make a large scale equipment from lab-scale than the conventional one. A split-disk experimental equipment, based on new type of spinning disk reactor, has been developed to generate an energy to break a bulk of injected gas into smaller gas bubble. Several cases of an experimental observation make it to confirm that a bulk of injecting gas could be continuously break into smaller bubbles. It shows the feasibility to make a scale-up of SDR by using the characteristic of Taylor-Proudman column in rotating flow. A theoretical study on single phase liquid flow is given to predict a liquid induced shear stress, which make the present study to be self-containment.

A Study on the Forming Load for roller feed rate and Thickness Reduction in the spinning Process of launch vehicle fuel tank dome (돔 형상의 스피닝 가공 공정에서 롤의 이송 속도와 소재의 두께감소에 대한 성형력 연구)

  • Yeom Sung-Ho;Nam Kyoung-O;Hong Sung-In
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.387-390
    • /
    • 2006
  • Conventional spinning, shear forming and flow forming techniques are being utilized increasingly due to the great flexibility provided for producing complicated parts, enabling customers to optimize designs and reduce weight and cost, all of which are vital, especially in automotive industries, space shuttle, a munitions industry. The deformation mechanism of conventional spinning and shear forming is studied in this paper through analysis. The forming loads of a spin formed dome in an Al launch vehicle fuel tank was studied analysis and a simple FE model to predict the forming loads of the dome was proposed. The analysis is carried out to study the effects of feed rates and thickness reduction on material flow.

  • PDF