• 제목/요약/키워드: Spinal neurons

검색결과 213건 처리시간 0.02초

Tumor Necrosis Factor-alpha and Apoptosis Following Spinal Nerve Ligation Injury in Rats

  • Kim, Sung-Hoon;Nam, Jae-Sik;Choi, Dae-Kee;Koh, Won-Wook;Suh, Jeong-Hun;Song, Jun-Gol;Shin, Jin-Woo;Leem, Jeong-Gil
    • The Korean Journal of Pain
    • /
    • 제24권4호
    • /
    • pp.185-190
    • /
    • 2011
  • Background: Spinal nerve ligation (SNL) injury in rats produces a pain syndrome that includes mechanical and thermal allodynia. Previous studies have indicated that proinflammatory cytokines such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) play an important role in peripheral mediation of neuropathic pain, and that altered dorsal root ganglion (DRG) function and degree of DRG neuronal apoptosis are associated with spinal nerve injury. The present study was conducted to evaluate the expression of TNF-${\alpha}$ and the extent of apoptosis in the dorsal root ganglion after SNL in rats. Methods: Sprague-Dawley rats were subjected to SNL of the left L5 and L6 spinal nerves distal to the DRG and proximal to the formation of the sciatic nerve. At postoperative day 8, TNF-${\alpha}$ protein levels in the L5.6 DRG were compared between SNL and naive groups using ELISA. In addition, we compared the percentage of neurons injured in the DRG using immunostaining for apoptosis and localization of activated caspase-3. Results: SNL injury produced significant mechanical and cold allodynia throughout the 7-day experimental period. TNF-${\alpha}$ protein levels were increased in the DRG in rats that had undergone SNL ($12.7{\pm}3.2$ pg/100 ${\mu}g$, P < 0.001) when compared with naive rats ($4.1{\pm}1.4$ pg/100 ${\mu}g$). The percentage of neurons or satellite cells co-localized with activated caspase-3 were also significantly higher in rats with SNL than in naive rats (P < 0.001, P < 0.05, respectively). Conclusions: SNL injury produces mechanical and cold allodynia, as well as TNF-${\alpha}$ elevation and apoptosis in the DRG.

Effects of Human Mesenchymal Stem Cell Transplantation Combined with Polymer on Functional Recovery Following Spinal Cord Hemisection in Rats

  • Choi, Ji Soo;Leem, Joong Woo;Lee, Kyung Hee;Kim, Sung-Soo;SuhKim, Haeyoung;Jung, Se Jung;Kim, Un Jeng;Lee, Bae Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권6호
    • /
    • pp.405-411
    • /
    • 2012
  • The spontaneous axon regeneration of damaged neurons is limited after spinal cord injury (SCI). Recently, mesenchymal stem cell (MSC) transplantation was proposed as a potential approach for enhancing nerve regeneration that avoids the ethical issues associated with embryonic stem cell transplantation. As SCI is a complex pathological entity, the treatment of SCI requires a multipronged approach. The purpose of the present study was to investigate the functional recovery and therapeutic potential of human MSCs (hMSCs) and polymer in a spinal cord hemisection injury model. Rats were subjected to hemisection injuries and then divided into three groups. Two groups of rats underwent partial thoracic hemisection injury followed by implantation of either polymer only or polymer with hMSCs. Another hemisection-only group was used as a control. Behavioral, electrophysiological and immunohistochemical studies were performed on all rats. The functional recovery was significantly improved in the polymer with hMSC-transplanted group as compared with control at five weeks after transplantation. The results of electrophysiologic study demonstrated that the latency of somatosensory-evoked potentials (SSEPs) in the polymer with hMSC-transplanted group was significantly shorter than in the hemisection-only control group. In the results of immunohistochemical study, ${\beta}$-gal-positive cells were observed in the injured and adjacent sites after hMSC transplantation. Surviving hMSCs differentiated into various cell types such as neurons, astrocytes and oligodendrocytes. These data suggest that hMSC transplantation with polymer may play an important role in functional recovery and axonal regeneration after SCI, and may be a potential therapeutic strategy for SCI.

신경병성 통증모델쥐에서 산화질소합성효소 억제제가 척수후각세포의 활성도에 미치는 영향 (Effects of NO Synthase Inhibitor on Responsiveness of Dorsal Horn Neurons in Neuropathic Pain Animal Model)

  • 임중우;곽영섭;정승수;이규래;윤덕미;남택상
    • The Korean Journal of Pain
    • /
    • 제13권1호
    • /
    • pp.19-30
    • /
    • 2000
  • Background: Partial nerve injury to a peripheral nerve may induce the development of neuropathic pain which is characterized by symptoms such as spontaneous burning pain, allodynia and hyperalgesia. Though underlying mechanism has not fully understood, sensitization of dorsal horn neurons may contribute to generate such symptoms. Nitric oxide acts as an inter- and intracellular messenger in the nervous system and is produced from L-arginine by nitric oxide synthase (NOS). Evidence is accumulating which indicate that nitric oxide may mediate nociceptive information transmission. Recently, it has been reported that NOS inhibitor suppresses neuropathic pain behavior in an neuropathic pain animal model. This study was conducted to determine whether nitric oxide could be involved in the sensitization of dorsal horn neurons in neuropathic animal model. Methods: Neuropathic animal model was made by tightly ligating the left L5 and L6 spinal nerves and we examined the effects of iontophoretically applied NOS inhibitor (L-NAME) on the dorsal horn neuron's responses to mechanical stimuli within the receptive fields. Results: In normal animals, NOS inhibitor (L-NAME) specifically suppressed the responses to the noxious mechanical stimuli. In neuropathic animals, the dorsal horn neuron's responses to mechanical stimuli were enhanced and NOS inhibitor suppressed the dorsal horn neuron's enhanced responses to non-noxious stimuli as well as those to noxious ones. Conclusions: These results suggest that nitric oxide may mediate nociceptive transmission in normal animal and also mediate sensitization of dorsal horn neurons in neuropathic pain state.

  • PDF

Mechanism of Glutamate-induced $[Ca^{2+}]i$ Increase in Substantia Gelatinosa Neurons of Juvenile Rats

  • Jung, Sung-Jun;Choi, Jeong-Sook;Kwak, Ji-Yeon;Kim, Jun;Kim, Jong-Whan;Kim, Sang-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권2호
    • /
    • pp.53-57
    • /
    • 2003
  • The glutamate receptors (GluRs) are key receptors for modulatory synaptic events in the central nervous system. It has been reported that glutamate increases the intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) and induces cytotoxicity. In the present study, we investigated whether the glutamate-induced $[Ca^{2+}]_i$ increase was associated with the activation of ionotropic (iGluR) and metabotropic GluRs (mGluR) in substantia gelatinosa neurons, using spinal cord slice of juvenile rats (10${\sim}21 day). $[Ca^{2+}]_i$ was measured using conventional imaging techniques, which was combined with whole-cell patch clamp recording by incorporating fura-2 in the patch pipette. At physiological concentration of extracellular $Ca^{2+}$, the inward current and $[Ca^{2+}]_i$ increase were induced by membrane depolarization and application of glutamate. Dose-response relationship with glutamate was observed in both $Ca^{2+}$ signal and inward current. The glutamate-induced $[Ca^{2+}]_i$ increase at holding potential of -70 mV was blocked by CNQX, an AMPA receptor blocker, but not by AP-5, a NMDA receptor blocker. The glutamate-induced $[Ca^{2+}]_i$ increase in $Ca^{2+}$ free condition was not affected by iGluR blockers. A selective mGluR (group I) agonist, RS-3,5-dihydroxyphenylglycine (DHPG), induced $[Ca^{2+}]_i$ increase at holding potential of -70 mV in SG neurons. These findings suggest that the glutamate-induced $[Ca^{2+}]_i$ increase is associated with AMPA-sensitive iGluR and group I mGluR in SG neurons of rats.

가미진간식풍탕(加味鎭肝熄風湯)이 손상(損傷)된 배양척수운동신경세포(培養脊髓運動神經細胞)에 미치는 영향(影響) (Effects of Gamijingansikpungtang on Cultured Spinal Motor Neurons)

  • 김성환;심정섭;김강산;강병기;이재익
    • 대한한방내과학회지
    • /
    • 제21권2호
    • /
    • pp.283-290
    • /
    • 2000
  • The purpose of this study is to examine the toxic effects caused by xanthine oxidase/hypoxanthine(XO/HX) and the effects of herbal extracts such as Jingansikpungtang(JST) and Gamijingansikpungtang(GJST) on the treatment of the toxic effects. For this purpose, experiments with the cultured nerve cells from the spinal motor neurons of new born mice were done. The results of these experiments were as follows. XO/HX, a oxygen radical-generating system, decreased the survival rate of the cultured cells on NR assay. MTT assay, the amount of neurofilaments and increased the amount of total proteinand increased the lipid peroxidation and the amount of LDH JST has the efficacy of increasing the amount of neurofilaments and total protein, and decreasing the lipid peroxidation and the amount of LDH, GJST has efficacy of increasing the amount of neurofilaments and total protein, and decreasing lipid peroxidation and the amount of LDH. From the above results, it is concluded that JST and GJST have marked efficacy as a treatment for the damages caused in the XO/HX mediated oxidative stress. And JST and GJST are thought to have certain pharmacologicall effects. Further clinical study of this pharmacological effects of JST and GJST should be complemented.

  • PDF

The Role of Somatostatin in Nociceptive Processing of the Spinal Cord in Anesthetized Cats

  • Jung, Sung-Jun;Park, Joo-Min;Lee, Jun-Ho;Lee, Ji-Hye;Kim, Sang-Jeong;Kim, Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권4호
    • /
    • pp.365-373
    • /
    • 1999
  • Somatostatin (SOM) is one of the major neuropeptides in dorsal root ganglion cells, but its role in spinal nociceptive process has not been well known. In present study we aimed to investigate the effect of SOM on the response of dorsal horn neurons to the various types of peripheral nociceptive stimuli in anesthetized cats. Using carbon-filament microelectrode, the single cell activities of wide dynamic range neurons were recorded from the lumbosacral enlargement after noxious mechanical (squeeze), thermal (radiant heat lamp) and cold (dry ice) stimulation to the receptive field. Sciatic nerve was stimulated electrically to evoke $A\;{\delta}-$ and C-nociceptive responses. SOM analogue, octreotide $(10\;{\mu}g/kg),$ was applied intravenously and the results were compared with those of morphine (2 mg/kg, MOR). Systemic SOM decreased the cellular responses to the noxious heat and the mechanical stimulation, but increased those to the cold stimulation. In the responses to the electric stimuli of sciatic nerve, $A\;{\delta}-nociceptive$ response was increased by SOM, while C-nociceptive response was decreased. On the other hand, MOR inhibited the dorsal horn cell responses to all the noxious stimuli. From the above results, it is concluded that SOM suppresses the transmission of nociceptive heat and mechanical stimuli, especially via C-fiber, while it facilitates those of nociceptive cold stimuli via $A\;{\delta}-fiber$.

  • PDF

Reactive Oxygen Species and Nitrogen Species Differentially Regulate Neuronal Excitability in Rat Spinal Substantia Gelatinosa Neurons

  • Lee, Hae In;Park, A-Reum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • 제39권4호
    • /
    • pp.229-236
    • /
    • 2014
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are implicated in cellular signaling processes and as a cause of oxidative stress. Recent studies indicate that ROS and RNS are important signaling molecules involved in nociceptive transmission. Xanthine oxidase (XO) system is a well-known system for superoxide anions ($O{_2}^{{\cdot}_-}$) generation, and sodium nitroprusside (SNP) is a representative nitric oxide (NO) donor. Patch clamp recording in spinal slices was used to investigate the role of $O{_2}^{{\cdot}_-}$ and NO on substantia gelatinosa (SG) neuronal excitability. Application of xanthine and xanthine oxidase (X/XO) compound induced membrane depolarization. Low concentration SNP ($10{\mu}M$) induced depolarization of the membrane, whereas high concentration SNP (1 mM) evoked membrane hyperpolarization. These responses were significantly decreased by pretreatment with phenyl N-tert-butylnitrone (PBN; nonspecific ROS and RNS scavenger). Addition of thapsigargin to an external calcium free solution for blocking synaptic transmission, led to significantly decreased X/XO-induced responses. Additionally, X/XO and SNP-induced responses were unchanged in the presence of intracellular applied PBN, indicative of the involvement of presynaptic action. Inclusion of GDP-${\beta}$-S or suramin (G protein inhibitors) in the patch pipette decreased SNP-induced responses, whereas it failed to decrease X/XO-induced responses. Pretreatment with n-ethylmaleimide (NEM; thiol-alkylating agent) decreased the effects of SNP, suggesting that these responses were mediated by direct oxidation of channel protein, whereas X/XO-induced responses were unchanged. These data suggested that ROS and RNS play distinct roles in the regulation of the membrane excitability of SG neurons related to the pain transmission.

흰쥐 족저에 Formalin 주입으로 유발된 통증반응에 대한 전침 효과 (Effects of Electroacupuncture on the Modulation of Formalin-induced Pain in the Rat)

  • 김재효;최동옥;김민선;박병림;손인철
    • 대한한의학회지
    • /
    • 제23권2호
    • /
    • pp.97-107
    • /
    • 2002
  • Objective : Acupuncture is a method used to treat many kinds of pain in oriental cultural medicine. Especially when hetero-segmental area acu-points are stimulated, the therapeutic effects of pain control have more critical properties than other methods of acupuncture. However, the mechanism of pain control by acupuncture is contradictory so far. The present study examined the effects of electroacupuncture (EA) applied to the acu-point of the hetero-segmental area on modulation of formalin-induced pain in Sprague-Dawley rats. Methods : In order to apply EA to acu-points in the plantar area of right forepaws, a pair of Teflon-coated stainless steel wires were implanted in HT 7 (Shin-Moon) and PC 7 (Dae-Reung) 7 days before the behavioral test. A behavioral test was performed by means of video camera after injection of 5% formalin ($50{\;}\mu\textrm{l}$) into the lateral plantar region of the left hind paw. EA was delivered by a constant DC current stimulator at 4~5 mA, 2 ms, and 10 Hz for 30 min. c-Fos protein expression was measured in the lumbar spinal cord at 2 hr and 4 hr after formalin injection. Results : Behavioral responses including favoring, flinching and biting occurred in the biphasic pattern, such as the 1st phase (0~5 min) and the 2nd phase (20~45 min) after formalin injection. However, EA (4~5 mA, 2 ms, 10 Hz) significantly inhibited the behavioral responses. Injection of formalin expressed c-Fos protein on the ipsilateral dorsal horn neurons in L3 - L5 and the expression was sustained more than 4 hrs after formalin injection. However, EA decreased c-Fos protein expression at dorsal horn neurons in the lumbar spinal cord till 4hrs after formalin injection. Conclusions : These results suggest that EA modulates formalin-induced pain and this inhibitory action may be elicited by the descending inhibitory system.

  • PDF

전침자극 매개성 항염증 반응에 대한 교감신경의 작용연구 (Sympathetic Nervous Activity is Involved in the Anti-Inflammatory Effects by Electroacupuncture Stimulation)

  • 조병곤;김남훈;남궁욱
    • Korean Journal of Acupuncture
    • /
    • 제36권3호
    • /
    • pp.162-170
    • /
    • 2019
  • Objectives : Increasing evidence suggests that parasympathetic vagus nerve activity plays a role in modulating acupuncture-induced anti-inflammatory reaction, but the function of sympathetic nerve is not known. Here, we investigated whether splanchnic sympathetic nerve activity was involved in the regulation of splenic expression of $TNF-{\alpha}$ mRNA by electroacupuncture (EA) in LPS-injected animals. Methods : DiI was injected into the stomach or celiac ganglion (CG) for retrograde labeling of the target tissues. EA was given at ST36 and the electrical stimulation on the sciatic nerve in LPS-injected mice. c-Fos signals in the tissues were analyzed by immunofluorescence staining, and $TNF-{\alpha}$ mRNA was analyzed by real-time PCR. Results : Application of EA at ST36 or electrical stimulation on the sciatic nerve induced c-Fos expression in neurons of the spinal cord and celiac ganglion (CG). Then, the vagotomy reduced c-Fos levels in CG neurons but not in the spinal cord in animals given EA. Expression of $TNF-{\alpha}$ mRNA which was induced in the spleen after LPS was significantly inhibited by EA, then the vagotomy elevated $TNF-{\alpha}$ mRNA level similar to that in LPS-injected animals. Splanchnectomy in animals given LPS and EA also increased $TNF-{\alpha}$ mRNA though it was less effective than vagotomy. Conclusions : Our data suggest that EA delivered to the spleen via the splanchnic sympathetic nerve may be involved in attenuating splenic inflammatory responses in LPS-injected animals.

신경근전기자극에 의한 척수운동신경원의 흥분성 변화 (The Change of Spinal Motor Neuron Excitability by Neuromuscular Electrical Stimulation)

  • 이정우;김태열;이인학;이준희
    • 대한임상전기생리학회지
    • /
    • 제1권1호
    • /
    • pp.1-15
    • /
    • 2003
  • The purpose of this study was to determine the effect of neuromuscular electrical stimulation(NMES) on the alteration of spinal motor neuron excitability. In this article, I would like to experiment on a standard capacity of clinical electrophysiology, a difference in applying methods and a clinical efficiency of NMES by Nerve conduction velocity. We used normal eight subjects without neuromuscular disease and all subjects participated 3 session, which at least 1 week between session. Participants classified according to each group in Antagonist, Agonist, Antagonist-Agonist by the NMES. The test was measured continuously pre test, post-test, post 20 minute test by EMG including H reflex, F wave, motor nerve conduction velocity(MNCV). The following results were obtained; 1. H-reflex latencies and H/M intervals were significantly increased in agonist and antagonist-agonist group(p<.01). 2. H-reflex amplitudes and H/M ratios were significantly decreased in agonist and antagonist-agonist group(p<.01). In agonist group, H-reflex amplitudes and H/M ratios were more significantly decreased than antagonist group. 3. F-wave latencies were significantly increased in agonist and antagonist-agonist group(p<.01). F/M intervals were significantly increased in antagonist-agonist group(p<.01). F wave conduction velocities were significantly increased in agonist and antagonist-agonist group(p<.01) but F/M ratios were not significant. 4. MNCV were significantly decreased in agonist(p<.01). These results lead us to the conclusion that agonist and Antagonist-agonist was significantly decreased excitability of spinal motor neuron. Conversely, Antagonist does not decreased. Therefore, A further direction of this study will be to provide more evidence that NMES have an effect on excitability of spinal motor neurons in UMN syndrome.

  • PDF