• Title/Summary/Keyword: Spin on-Glass

Search Result 208, Processing Time 0.041 seconds

Fabrication of SOI FinFET Devices using Arsenic Solid-phase-diffusion

  • Cho, Won-Ju;Koo, Hyun-Mo;Lee, Woo-Hyun;Koo, Sang-Mo;Chung, Hong-Bay
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.394-398
    • /
    • 2007
  • A simple doping method to fabricate a very thin channel body of the nano-scaled n-type fin field-effect-transistor (FinFET) by arsenic solid-Phase-diffusion (SPD) process is presented. Using the As-doped spin-on-glass films and the rapid thermal annealing for shallow junction, the n-type source-drain extensions with a three-dimensional structure of the FinFET devices were doped. The junction properties of arsenic doped regions were investigated by using the $n^+$-p junction diodes which showed excellent electrical characteristics. The n-type FinFET devices with a gate length of 20-100 nm were fabricated by As-SPD and revealed superior device scalability.

Luminescent Properties of BaSi2O5:Eu2+ Phosphor Film Fabricated by Spin-Coating of Ba-Eu Precursor on SiO2 Glass

  • Park, Je Hong;Kim, Jong Su;Kim, Jong Tae
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.45-49
    • /
    • 2014
  • Well-crystallized $BaSi_2O_5:Eu^{2+}$ phosphor films were synthesized by heat treatment of spin-coated BaO:Eu on $SiO_2$ glass. We investigated luminescence-structure properties of these phosphor films as a function of heat-treatment temperature. From x-ray diffraction patterns, our $BaSi_2O_5:Eu^{2+}$ phosphor films revealed that (111)- and (204)-crystal planes of $BaSi_2O_5$ crystal were dominantly increased with an increase of heat-treatment temperature. Photoluminescence intensities of $BaSi_2O_5:Eu^{2+}$ phosphor films were increased with amount of these crystal planes. It can be explained that $Eu^{2+}$ ions were stably occupied at specific crystal orientation of $BaSi_2O_5$ crystal, enhancing the luminescent intensities of $BaSi_2O_5:Eu^{2+}$ phosphor films. In addition, our $BaSi_2O_5:Eu^{2+}$ phosphor films had transmittance of 70% at 510 nm,.due to the dense morphology and specific crystallinity of $BaSi_2O_5:Eu^{2+}$ phosphor films.

Synthesis and Characterization of New Intermetallic Compounds $M_3(AsTe_3)_2$ (M=Cr, Fe, Co)

  • 정진승;김현학;강석구;채원식;김돈;이성한
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.10
    • /
    • pp.1105-1108
    • /
    • 1997
  • The new amorphous intermetallic compounds, M3(AsTe3)2: M=Cr, Co, Fe, were synthesized by the precipitation reaction of the Zintl anion AsTe33- with the divalent transition metal halides in aqueous solution and analyzed by EDS equipped with SEM and PIXE. The empirical formula of the specimens was found to be Fe3.0As1.8Te5.9, Co3.0As2.1Te6.5, and Cr3.0As2.0Te6.9 by the quantitative elemental analysis. The dc specific resistivity of the materials was measured as a function of temperature in the range from 20 to 300 K, in which their resistivity of Cr3(AsTe3)2 was largely dependent on temperature, while those of Co3(AsTe3)2 and Fe3(AsTe3)2 were only slightly dependent on temperature. To characterize the spin glass state of the specimens, the ac and dc magnetic susceptibility were measured and it was found that Co3(AsTe3)2 and Fe3(AsTe3)2 undergo a transition to a spin glass state at 6 K and 38 K, respectively. Magnetization data are reported as both thermal remanent magnetization (TRM) and isothermal remanent magnetization (IRM) as a function of magnetizing field and temperature.

Coating gold nanoparticles to a glass substrate by spin-coat method as a surface-enhanced raman spectroscopy (SERS) plasmonic sensor to detect molecular vibrations of bisphenol-a (BPA)

  • Eskandari, Vahid;Hadi, Amin;Sahbafar, Hossein
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.417-426
    • /
    • 2022
  • Bisphenol A (BPA) is one of the chemicals used in monomer epoxy resins and polycarbonate plastics. The surface-enhanced Raman spectroscopy (SERS) method is precise for identifying biological materials and chemicals at considerably low concentrations. In the present article, the substrates coated with gold nanoparticles have been studied to identify BPA and control the diseases caused by this chemical. Gold nanoparticles were made by a simple chemical method and by applying gold salt and trisodium citrate dihydrate reductant and were coated on glass substrates by a spin-coat approach. Finally, using these SERS substrates as plasmonic sensors and Raman spectroscopy, the Raman signal enhancement of molecular vibrations of BPA was investigated. Then, the molecular vibrations of BPA in some consumer goods were identified by applying SERS substrates as plasmonic sensors and Raman spectroscopy. The fabricated gold nanoparticles are spherical and quasi-spherical nanoparticles that confirm the formation of gold nanoparticles by observing the plasmon resonance peak at 517 nm. Active SERS substrates have been coated with nanoparticles, which improve the Raman signal. The enhancement of the Raman signal is due to the resonance of the surface plasmons of the nanoparticles. Active SERS substrates, gold nanoparticles deposited on a glass substrate, were fabricated for the detection of BPA; a detection limit of 10-9 M and a relative standard deviation (RSD) equal to 4.17% were obtained for ten repeated measurements in the concentration of 10-9 M. Hence, the Raman results indicate that the active SERS substrates, gold nanoparticles for the detection of BPA along with the developed methods, show promising results for SERS-based studies and can lead to the development of microsensors. In Raman spectroscopy, SERS active substrate coated with gold nanoparticles are of interest, which is larger than gold particles due to the resonance of the surface plasmons of gold nanoparticles and the scattering of light from gold particles since the Raman signal amplifies the molecular vibrations of BPA. By decreasing the concentration of BPA deposited on the active SERS substrates, the Raman signal is also weakened due to the reduction of molecular vibrations. By increasing the surface roughness of the active SERS substrates, the Raman signal can be enhanced due to increased light scattering from rough centers, which are the same as the larger particles created throughout the deposition by the spin-coat method, and as a result, they enhance the signal by increasing the scattering of light. Then, the molecular vibrations of BPA were identified in some consumer goods by SERS substrates as plasmonic sensors and Raman spectroscopy.

Transparent Conducting Ga-doped ZnO Thin Film for Flat-Panel Displays with a Sol-gel Spin Coating

  • Nam, Gil-Mo;Kwon, Myoung-Seok
    • Journal of Information Display
    • /
    • v.9 no.3
    • /
    • pp.8-11
    • /
    • 2008
  • A novel non-alkoxide sol-gel process for synthesizing Ga-doped ZnO thin film on glass was derived for possible use as a transparent electrode in flat-panel displays, using zinc acetate dehydrate as the starting material. The structural and electrical properties of thin films have been characterized as functions of Ga addition and post-heat-treatments. Their carrier density, Hall mobility, and optical transmittance were measured and discussed herein to explain the characteristics of the sol-gel-derived Ga-doped ZnO thin film on glass.

Magnetic Semiconductors Thin Films-Unidirectional Anisotropy

  • Lubecka, M.;Maksymowicz, L.J.;Szymczak, R.;Powroznik, W.
    • Journal of Magnetics
    • /
    • v.4 no.1
    • /
    • pp.33-37
    • /
    • 1999
  • Unidirectional magnetic anisotropy field ($H_an$) was investigated for thin films of $CdCr{2-2x}In_{2X}Se_4 (0$\leq$x$\leq$0.2). This anisotropy originates from the microscopic anisotropic Dzyaloshinskii-Moriya (DM) interaction which arise from the spin-orbit scattering of the conduction electrons by the nonmagnetic impurities. This interaction maintains the remanent magnetization in the direction of the initial applied field. Then the single easy direction of the magnetization is parallel to the direction of the magnetic field. The anisotropy produced by field cooling is unidirectional I.e. the spins system deeps some memory of the cooling field direction. The chalcogenide spinel of$ CdCr_{2-2x}In){2X}Se_4$belongs to the class of the magnetic semiconductors. The magnetic disordered state is obtained when ferromagnetic structure is diluted by In. Then we have the mixed phase characterised by coexistence the magnetic long range ordering (IFN-infinite ferromagnetic network) and the spin glass order (Fc-finite clusters). The total magnetic anisotropy energy depends on the state of magnetic ordering. In our study we concentrated on the magnetic state with reentrant transition and spin glass state. The polycrystalline $ CdCr_{2-2x}In){2X}Se_4$ thin films were obtained by rf sputtering technique. We applied the ferromagnetic resonance (FMR) and M-H loop techniques for determining the temperature composition dependencies of Han. From the experimental data, we have found that Han decreases almost linearly when temperature is increased and in the low temperature is about three times bigger at SG state with comparison to the state with REE.

  • PDF

Organic TFT fabricated on ultra-thin flexible plastic with a rigid glass support

  • Son, Young-Rae;Han, Seung-Hoon;Lee, Sun-Hee;Lee, Ki-Jung;Choi, Min-Hee;Choo, Dong-Joon;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.756-759
    • /
    • 2007
  • We have fabricated pentacene OTFT on ultra-thin flexible polyimide film with a rigid glass support. Polyimide film of the thickness of $10{\mu}m$ has formed on glass by spin coating from the solution. After the entire OTFT process, the OTFT exhibited a fieldeffect mobility of $0.4\;cm^2/Vs$, an $I_{on}/I_{off}$ ratio of $10^7$ and a subthreshold swing of 0.7 V/dec. The OTFT on polyimide film has been detached from the glass support and laminated on a plastic support of $130\;{\mu}m-thick$ PET film. After the detach process, in spite of the degrading of its field-effect mobility, the OTFT showed high $I_{on}/I_{off}$ as high $as{\sim}10^6$.

  • PDF

Characteristics of ATO Thin Films Prepared by Sol-Gel Process (졸겔법으로 제조된 ATO 박막의 특성 연구)

  • 구창영;이동근;이희영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.192-195
    • /
    • 2000
  • Antimony doped tin oxyde thin films have been deposited by sol-gel method using non-alkoxide precursor SnCl$_2$$.$2H$_2$O as host and SbC1$_3$ as dopant material. Using spin coating method, thin films of thickness up to 200nm have been uniformly deposited on Corning 1737F non-alkali glass substrates. Effect of Sb doping concentration and heat treatment on electrical and optical properties was investigated. Heat treatment was performed at the temperature from 350$^{\circ}C$ to 650$^{\circ}C$ in flowing O$_2$. The resulting ATO films showed widely changing electrical resistivity and optical transmittance values in the visible spectrum depending on the composition and firing condition.

  • PDF

Enhanced Performance Characteristics of Polymer Photovoltaics by Adding an Additive-incorporated Active Layer

  • Lee, Hye-Hyeon;Hwang, Jong-Won;Jo, Yeong-Ran;Gang, Yong-Su;Park, Seong-Hui;Choe, Yeong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.316-316
    • /
    • 2010
  • Thin films spin-coated from solvent solutions are characterized by solution parameters and spin-coating process. In this study, performance characteristics of polymer solar cells were investigated with changing solution parameters such as solvent and additives. The phase-separation between polymer and fullerene is needed to make the percolation pathway for better transportation of hole and electron in polymer solar cells. For this reason, cooperative effects of solvent mixtures adding additives with distinct solubility have been studied recently. In this study, chlorobezene, 1, 2-dichlorbenzene, and chloroform were used as solvent. 1, 8-diiodoctaned and 1, 8-octanedithiol were used as additives and were added into poly(3-hexylthiophene-2, 5-diyl)/[6, 6]-phenyl C61 butyric acid methyl ester (P3HT/PCBM) blends. Pre-patterned ITO glass was cleaned using ultrasonication in mixed solvent with ethyl alcohol, isopropyl alcohol and acetone. PEDOT:PSS was spin-coated on to the ITO substrate at 3000rpm and was baked at $120^{\circ}C$ for 10min on the hotplate. The prepared solution was spin-coated at 1000rpm and the spin-coated thin film was dried in the Petri dishes. Al electrode was deposited on the thin film by thermal evaporation. The devices were annealed at $120^{\circ}C$ for 30min. By adding 2.5 volume percent of additives into the chlorobenzene from that bulk heterojunction films consisting of P3HT/PCBM, the power efficiency (AM 1.5G conditions) was increased from 2.16% to 2.69% and 3.12% respectively. We have investigated the effect of additives in P3HT/PCBM blends and the film characteristics and the film characteristics including J-V characteristics, absorption, photoluminescence, X-ray diffraction, and atomic force microscopy to mainly depict the morphology control by doping additives.

  • PDF

Magnetoresistance of $[FeNi/Cu/CoFe(Co)/Cu]_N$ Spin-Valve Multilayers ($[FeNi/Cu/CoFe(Co)/Cu]_N$ Spin-Valve 다층박막의 자기저항 특성)

  • 김미양;이정미;최규리;오미영;이장로
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.1
    • /
    • pp.41-47
    • /
    • 1999
  • $Buffer/[NiFe/Cu/CoFe(Co)/Cu]_N$ spin valve multilayers prepared by dc magnetron sputtering on a corning glass substrate using NiFe and CoFe(Co) posses different coercivities. Dependence of magnetoresistance on the type and thickness of buffer layer, thickness of Cu, NiFe, stacking number of multilayer, substrate temperature and annealing temperature in the form $[NiFe/Cu/CoFe(Co)/Cu]_N$ spin-valve multilayers were investigated. To evaluate effect of magnetoresistance for this samples, X-ray diffraction analysis, vibrating sample magnetometer analysis, and magnetoresistance measurement (4-probe method) were performed the maximum magnetoresistance ratio and coercivity were 7.5 % and 140 Oe, respectively for $Cr-50{\AA}/[NiFe-20{\AA}/Cu-{\AA}/Co-20{\AA}/Cu-50{\AA}]_10$ at substrate temperature of 9$0^{\circ}C$. Magnetoresistance slope maintained 0.25%/Oe until 15$0^{\circ}C$ of annealing temperature, and then decreased to 0.03%/Oe at 20$0^{\circ}C$. It was confirmed that the main factor of thermal stability was deteriorating of soft magnetic properties in the NiFe layer.

  • PDF