• Title/Summary/Keyword: Spin exchange parameters

Search Result 13, Processing Time 0.019 seconds

Density Functional Analysis of the Spin Exchange Interactions in VOSb2O4

  • Koo, Hyun-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2338-2340
    • /
    • 2012
  • The spin exchange parameters of $VOSb_2O_4$ were evaluated by performing energy-mapping analysis based on density functional calculations. The spin exchange interaction between the nearest-neighbor $V^{4+}$ ions is strongly antiferromagnetic while other interactions are negligible. Thus, the magnetic structure of $VOSb_2O_4$ is best described by a spin-1/2 Heisenberg antiferromagnetic chain with no spin frustration.

Magnetic Susceptibility of Anisotropically Interacting Spin-Pair Systems

  • Kim, Jin-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.5
    • /
    • pp.347-349
    • /
    • 1994
  • The Oguchi theory of antiferromagnetism has been modified for antiferromagnetically interacting spin-pair systems with anisotropic exchange interaction. The parallel and perpendicular susceptibilities $({\chi}_{\parallel}\;and\;{\chi}_{\perp})$ have been expressed as functions of exchange interactions $(J_z\;and\;{\gamma}=J_x/J_z)$, anisotropic molecular field parameters $({\kappa}\;and\;{\kappa}_x)$, $g_z\;and\;g_x$. In contrast to the previous theories, the parallel susceptibilities are not the same as the perpendicular susceptibilities above Neel temperature $T_N$.

Hysteresis Loops of Magnetically Coupled Multilayers - Experiment and Calculations

  • Czapkiewicz, M.;Stobiecki, T.;Rak, R.;Wrona, J.;Kim, C.G.
    • Journal of Magnetics
    • /
    • v.9 no.2
    • /
    • pp.60-64
    • /
    • 2004
  • In this paper calculations of magnetisation and magnetoresistance characteristics of the Spin Valve (SV) and Pseudo Spin Valve (PSV) spintronics structures are reported and compared with the experimental data. The magnetisation reversal process was analysed with respect to the Stoner- Wohlfahrt model of total surface energy in terms of uniaxial anisotropy, exchange coupling between ferromagnetic layers, unidirectional exchange anisotropy of pinned layer (modelled by exchange coupling between magnetisation of pinned layer and net magnetisation of antiferromagnetic layer with high anisotropy). The numerical simulation of the model to the experimental magnetisation data yielded the above parameters for SV and PSV structures. These parameters were used to more sophistically micromagnetic modelling tool originating from the project called Object Oriented Micromagnetic Framework. Influence of the shape anisotropy of the Magnetic Tunnelling Junction cell used in MRAM was simulated by means of micromagnetic simulations. Results were compared to those obtained from the spot Kerr measurements.

Behavior of Spin Waves Excited in Magnetic Thin Film (자성 박막에서 여기되는 스핀파 거동)

  • 한기평;손영준;백문철;조경익
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.2
    • /
    • pp.86-92
    • /
    • 2000
  • The spin wave absorption spectra are obtained by a simultaneous solution of the Maxwell equation and the Gilbert equation considering the boundary condition of electromagnetic wave and magnetization in the film surfaces. The physical parameters that influence the absorption energy are thickness, exchange stiffness constant, surface magnetic anisotropy, magnetization. damping factor, electric resistivity of the thin film. We investigated how these parameters affect the resonance field, the linewidth and the intensity of the spin wave spectrum.

  • PDF

^1H $-NMR Studies on Ln^{3+}$-DMF Systems (Ⅰ). Exchange Rates and Proton Chemical Shifts of CHO Group (Ln^{3+}$-DMF계의 ^1H $-NMR 연구 (Ⅰ). DMF 분자의 교환과 CHO기의 양성자 화학적이동)

  • Mi-Kyung Lee;Chang-Ju Yoon;Young-sang Choi
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.3
    • /
    • pp.345-350
    • /
    • 1992
  • Proton lineshapes and chemical shifts of paramagnetic solutions of Ln$(NO_3)_3$ in DMF have been measured over the temperature range 240K to 3807K. Solvation sphere exchange rates and the thermodynamic exchange parameters for CHO group of the DMF molecules have been extracted from these data. The results were established through a detailed analysis and discussion of the temperature depending data of the 1/$T_2$ and ${\Dellta}{\omega}$ data were analyzed in detail, and it has been found that delocalization of the unpaired electron spin from some $Ln^{3+}$ ion to DMF molecules beyond the first solvation shell would occur, giving rise to a scalar relaxation contribution in the bulk solvent.

  • PDF

A first-principles theoretical investigation of the structural, electronic and magnetic properties of cubic thorium carbonitrides ThCxN(1-x)

  • Siddique, Muhammad;Rahman, Amin Ur;Iqbal, Azmat;Azam, Sikander
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1373-1380
    • /
    • 2019
  • Besides promising implications as fertile nuclear materials, thorium carbonitrides are of great interest owing to their peculiar physical and chemical properties, such as high density, high melting point, good thermal conductivity. This paper reports first-principles simulation results on the structural, electronic and magnetic properties of cubic thorium carbonitrides $ThC_xN_{(1-x)}$ (X = 0.03125, 0.0625, 0.09375, 0.125, 0.15625) employing formalism of density-functional-theory. For the simulation of physical properties, we incorporated full-potential linearized augmented plane-wave (FPLAPW) method while the exchange-correlation potential terms in Kohn-Sham Equation (KSE) are treated within Generalized-Gradient-Approximation (GGA) in conjunction with Perdew-Bruke-Ernzerhof (PBE) correction. The structural parameters were calculated by fitting total energy into the Murnaghan's equation of state. The lattice constants, bulk moduli, total energy, electronic band structure and spin magnetic moments of the compounds show dependence on the C/N concentration ratio. The electronic and magnetic properties have revealed non-magnetic but metallic character of the compounds. The main contribution to density of states at the Fermi level stems from the comparable spectral intensity of Th (6d+5f) and (C+N) 2p states. In comparison with spin magnetic moments of ThSb and ThBi calculated earlier with LDA+U approach, we observed an enhancement in the spin magnetic moments after carbon-doping into ThN monopnictide.

Structural Analysis and Magnctic Propcrics of Amorphous $Fe_{78}Si_{9}B_{13}$ Alloy (비정질 $Fe_{78}Si_{9}B_{13}$ 합금의 구조와 자성 연구)

  • 이희복;송인명;유성초;임우영
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.3
    • /
    • pp.179-184
    • /
    • 1993
  • The X-ray diffraction pattern of amorphous $Fe_{78}Si_{9}B_{13}$ alloy was analyzed to obtain the radial distribution function (RDF) where the first peak was in the form of Gaussian function. The calculated coordination number of the form of Gaussian functiono The calculated coordination number of the sample is 13.5, the mean distance betweeon near-neighbor atoms $r_{0}$ is $2.595{\AA}$ and a Gaussian parametet ${\delta}r$ indicating near-neighbor atomic distri-bution is $0.27{\AA}$. The temperature dependence of saturated magnetization at low temperature could be explained by spin wave excitations theory yielding the spin wave stiffness constant as $117.8\;meV\;{\AA}^2$. Also, we tried to fit the observed temperature dependence of saturated magnetization with the Handrich's equation of the modified molecular field theory for the amorphous ferromagnet. Nice fittings are obtained when we used the parameters ${\Delta}=0.32$(S=1/2) and ${\Delta}=0.23$(S=1), respectively. Finally, the calculated spin wave stiffness constant using the parameters and the structural data are $149\;meV\;{\AA}^2$ for S=1/2 and $138\;meV\;{\AA}^2$ for S=1, respectively. The mean exchange coupling integral between near-neighbor atoms was estimated to be 17.9 meV for S=1/2 and 6.7 meV for S=1.

  • PDF

ANALYSIS OF HIGH-FIELD MAGNETIZATION PROCESS IN $Sm_{2}Fe_{17}N_{3.0}$

  • Zhao, T.S.;Jin, H.M.;Lee, J.I.;Paug, K.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.679-682
    • /
    • 1995
  • The observed high-field magnetization curves of $Sm_{2}Fe_{17}N_{3.0}$ at 4.2 K and 296 K are well reproduced by the calculation using the Sm-Fe exchange field $2\mu\textrm{B}H_{ex}\;=\;320\;K$ and two crystalline electric field parameters ${A_{0}}^{2}=\;-910\;K$ and ${A_{1}}^{0}=\;200\;K$. The calculation shows that during the magnetization process along the hard axis at 4.2 K, the Sm moment rotates toward the direction antiparallel to H when H < 110 kOe and then returns to the field direction with further increase of the field. At 296 K, the Sm moment rotates toward the direction antiparallel to H monotonously with increasing field and finally becomes antiparallel to H when $H{\geq}H_{A}=210\;kOe$. The particular magnetization process of the Sm moment can be explained by the field-induced noncollinear coupling between the spin and orbital moments of the Sm ion.

  • PDF

Electron Microscopy and Magnetic Properties of Tetra(n-butyl) ammonium salts of $[Ni(dmbit)_2]^1- (dmbit^2-:C_7H_2S_5$:2-thiobenzo[d]-1,3-dithiole-5,6-dithiolate;$dmbbip^{2-}:C_{12}H_{16}S_4$:1,2-bis(isopropylthio)benzene-4,5-dithiolat

  • No, Dong Yeon;Gang, Mi Jeong;Lee, Ha Jin;Kim, Jong Hyeon;Choe, Jin Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.1
    • /
    • pp.46-50
    • /
    • 1996
  • Monoanionic nickel(Ⅲ) complexes, [Ni(dmbit)2]1- and [Ni(dmbbip)2]1- where dmbit2- and dmbbip2- denote 2-thiobenzo[d]-1,3-dithiole-5,6-dithiolate and 1,2-bis(isopropylthio)benzen-4,5-dithiolate, respectively, have been synthesized by the iodine oxidation of dianionic complexes. In the scanning electron microscopic(SEM) images, these complexes show the well-grown two-dimensional layered structures which are clearly comparable to the dianionic ones with three-dimensional structures. Magnetic susceptibilities of nickel(Ⅲ)complexes are fitted well with the two-dimensional Heisenberg antiferromagnet model of S=1/2 system resulting in the spin-exchange parameters (|J|/k) of 11.4 K and 0.45 K, respectively. The weaker magnetic interaction in [Ni(dmbbip)2]1- is resulted from the bulky isopropyl groups on the periphery of dmbbip ligand. EPR measurements for [Ni(dmbit)2]1- give the signal with axial symmetry and the anisotropic g-values for low-spin nickel(Ⅲ) (g//=2.158, g =2.030,gav=2.074 at 300 K; g//=2.162, g =2.038, gav=2.080 at 77 K). It is therefore concluded that nickel(Ⅱ) is oxidized to nickel(Ⅲ), rather than dmbit2- and dmbbip2- ligands are, by the iodine oxidation. The paramagnetic Ni(Ⅲ) would be located in the axial symmetry(D4h) with the electronic configuration of (dxz2dyz2dz22dxy1dx2-y20).