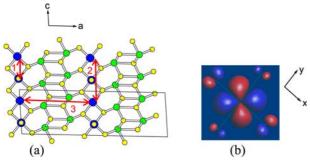
Density Functional Analysis of the Spin Exchange Interactions in VOSb₂O₄

Hyun-Joo Koo


Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Korea E-mail: hjkoo@khu.ac.kr Received January 29, 2012, Accepted April 19, 2012

The spin exchange parameters of $VOSb_2O_4$ were evaluated by performing energy-mapping analysis based on density functional calculations. The spin exchange interaction between the nearest-neighbor V⁴⁺ ions is strongly antiferromagnetic while other interactions are negligible. Thus, the magnetic structure of $VOSb_2O_4$ is best described by a spin-1/2 Heisenberg antiferromagnetic chain with no spin frustration.

Key Words : Spin exchange interactions, Mapping analysis, Density functional theory calculations, VOSb₂O₄

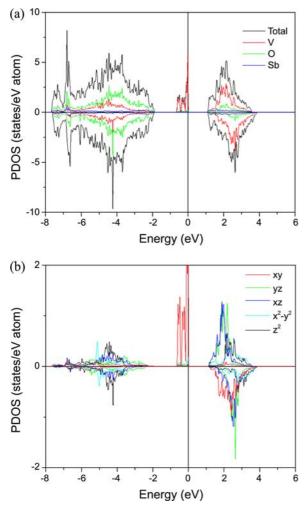
Introduction

The layered vanadium oxide VOSb₂O₄, synthesized by solid state reaction, crystallizes in the monoclinic space group C2/c with the unit cell dimensions a = 18.03 Å, b =4.800 Å, c = 5.497 Å, and $\beta = 94.58^{\circ}$.¹ In VOSb₂O₄ the VO₅ square pyramids share their trans edges to form VO3 ribbon chains running along the c-direction (Figure 1(a)). The basal O atoms of these ribbon chains are connected to Sb₂O₂ ribbon chains along the a-direction to form a layer of composition VOSb₂O₄, and such VOSb₂O₄ layers are stacked along the b-direction. Each V atom exists as a $V^{4+}(d^1, S = 1/2)$ 2) ion with its magnetic orbital (*i.e.* the singly filled orbital) described by the xy orbital (Figure 1(b)). Thus, in describing the magnetic properties of VOSb₂O₄, it is natural to consider the nearest-neighbor intrachain exchange J₁, the next-nearest neighbor intrachain exchange J2, and the interchain exchange J₃ depicted in Figure 1(a). Concerning the values of these parameters, there have been conflicting reports.^{2,3} The temperature-dependence of the magnetic susceptibility of VOSb₂O₄ shows a broad maximum at $T_{max} \approx 160$ K, which is well reproduced by a spin-1/2 Heisenberg antiferromagnetic (AFM) chain with $J_1/k_B \approx 250$ K.² (We use the convention that an AFM spin exchange is represented by a

Figure 1. (a) Projection view of the crystal structure of VOSb₂O₄, where the blue, green and yellow circles represent V, Sb and O atoms, respectively. The numbers 1, 2 and 3 refer to the spin exchange paths J_1 , J_2 and J_3 , respectively. (b) Magnetic orbital xy of an isolated VO₅ square pyramid taken from VOSb₂O₄.

positive number.) When two intrachain exchanges J1 and J2 are used, a poorer description of the observed magnetic susceptibility data results, so Pashchenko et al.² concluded that VOSb₂O₄ is a one-dimensional (1D) spin-1/2 Heisenberg AFM chain with no spin frustration. In their density functional analysis of the magnetic susceptibility of VOSb₂O₄, Chaplygin et al.3 carried out calculations for the nonmagnetic (NM), ferromagnetic (FM) and AFM states of VOSb₂O₄ to find that the AFM state is lower in energy than the FM state by 14.2 meV per formula unit (FU). Thus, they obtained $J_1 = 330$ K by $\Delta E = E_F - E_{AF} = 2J_1$, and $J_1 = 238$ K by $\Delta E = J_1 \ln 2$ considering the quantum fluctuation in the AFM state. Since there is uncertainty as to how well density functional calculations include the effect of quantum fluctuations, Chaplygin et al. analyzed the electronic band structures of the NM and FM states in terms of tight-binding fits to deduce the hopping parameters t_i associated with the spin exchange paths J_i (i = 1-3). Using the empirical relationship $J_i = -4t_i^2/U$, they obtained $J_1 = 1786$ K, $J_2 = 301$ K, and $J_3 = 81$ K. Although the relative values of these $J_1 - J_3$ appear to be reasonable, the J1 value thus obtained is greater than the experimental estimate by a factor of \sim 7. To date, all three exchange parameters $J_1 - J_3$ of VOSb₂O₄ have not been evaluated on the basis of density functional calculations. In the present work, we carry out energy-mapping analysis based on density functional theory (DFT) calculations to

Computational Details


evaluate the spin exchange parameters $J_1 - J_3$ of VOSb₂O₄.

Our density functional calculations employed the projector augmented wave (PAW) method encoded in the Vienna ab initio simulation package (VASP),⁴⁻⁶ and the generalizedgradient approximation (GGA) of Perdew, Burke and Ernzenhof⁷ for the exchange-correlation functional with the plane-wave-cut-off energy of 450 eV and a set of $2 \times 6 \times 4$ k-points to cover the irreducible Brillouin zone. To examine the effect of electron correlation associated with the V 3d states, the DFT plus on-site repulsion method (DFT+U)⁸ was used with the effective U_{eff} values of 0-4 eV. To evaluate the spin exchange interactions of the next-nearest neighbor exchange J_2 , we used the (a, b, 2c) supercell for our calculations.

Mapping Analysis

The plots of the partial density of states (PDOS), calculated for the FM state of $VOSb_2O_4$, are presented in Figure 2, which shows that the up-spin xy states are the only V 3d states that are occupied. This is consistent with the electronic structure description that the V atoms exist in $VOSb_2O_4$ as V^{4+} (d¹) ions, and the magnetic orbital of V^{4+} (d¹) is the xy orbital.

The spin exchange interactions of a crystalline solid can be determined by energy-mapping analysis on the basis of first principles electronic density functional calculations for its ordered spin states.⁹⁻¹² Our approach is very different from that of Chaplygin *et al.*,³ although both rely on first principles DFT electronic structure calculations. In the tightbinding fitting analysis based on local spin-density approximation (LSDA) calculations,^{13,14} the electronic structure of a

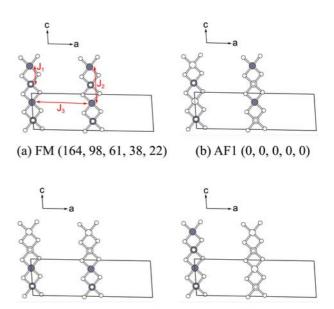


Figure 2. PDOS plots calculated for (a) the V, O and Sb atoms and for (b) the V 3d states of VOSb₂O₄, which are obtained from the DFT+U (with U = 1 eV) calculations for the FM state.

magnetic insulator is described by the electronic energy band calculated for its normal metallic state, and the dispersion relations of the resulting partially filled bands are used to extract the hopping integrals needed for discussing the antiferromagnetic contribution JAF to spin exchange interactions. Therefore, this approach leads to results quite similar to those of the spin dimer analysis based on extended Hückel tight binding (EHTB) calculations.⁹ Both approaches are limited in that the ferromagnetic contributions J_F to spin exchange interactions cannot be evaluated. In mapping analysis described below, we employ first principles DFT calculations to extract spin exchange parameters that contain both FM and AFM contributions. To evaluate three spin exchange parameters, $J_1 - J_3$ of VOSb₂O₄, we consider four ordered spin states, FM, AF1, AF2 and AF3, shown in Figure 3. The relative energies of these four states determined from our DFT+U calculations are summarized in Figure 3. The electronic structures of the FM, AF1, AF2 and AF3 states show an energy gap for all U (= 0-4 eV) values employed. The energies of these states can also be described in terms of the spin Hamiltonian,

$$\hat{\mathbf{H}} = \sum_{i < j} \mathbf{J}_{ij} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j \tag{1}$$

where $J_{ij} = J_1 - J_3$. By applying the energy expressions obtained for spin dimers with N unpaired spin per spin site (N = 1 for VOSb₂O₄), the total spin exchange energies, per eight formula units (FUs), of the four ordered spin states are written as,^{9,15,16}

(c) AF2 (71, 43, 26, 16, 8) (d) AF3 (164, 99, 62, 38, 22)

Figure 3. Ordered spin arrangements of VOSb₂O₄, where the large gray and white circles represent the up-spin and down-spin V⁴⁺ ion sites, respectively. The small white circles indicate O atoms. The red arrows represent the spin exchange paths $J_1 - J_3$. In each state, the numbers in parenthesis, from the left to right, are the relative energies (in meV per eight FUs) with respect to the AF1 state obtained from the DFT+U calculations with U = 0, 1, 2, 3, and 4 eV, respectively.

Table 1. Spin exchange parameters (in K) and Curie-Weiss temperature (in K) of $VOSb_2O_4$ obtained from DFT+U calculations

U	0 eV	1 eV	2 eV	3 eV	4 eV
J_1/k_B	476	286	179	111	64
J_2/k_B	32	18	12	9	7
J_3/k_B	0	1	1	1	0
J_2/J_1	0.07	0.06	0.07	0.08	0.11
θ	-254	-152	-96	-60	-36

$$\begin{split} E_{FM} &= (8J_1 + 8J_2 + 16J_3) \left(\frac{N^2}{4}\right) \\ E_{AF1} &= (-8J_1 + 8J_2 - 16J_3) \left(\frac{N^2}{4}\right) \\ E_{AF2} &= (-8J_2 + 16J_3) \left(\frac{N^2}{4}\right) \\ E_{AF3} &= (+8J_1 + 8J_2 - 16J_3) \left(\frac{N^2}{4}\right). \end{split}$$
(2)

By mapping the relative energies of the four ordered spin states determined by the DFT+U calculations onto the corresponding relative energies determined from the above spin exchange energies, we obtained the values of $J_1 - J_3$ summarized in Table 1, which shows that J_1 is AFM and is dominant for all cases of DFT+U calculations, J_2 is AFM and is substantially weaker than J_1 , and J_3 is negligible. The ratio J_2/J_1 , which is a measure for the intrachain spin frustration, is negligibly small. For example, $J_2/J_1 \approx 0.06$ in the DFT+U calculations with U = 1 eV, which is considerably smaller than 0.17 estimated by Chaplygin *et al.* from their tight-binding analysis.³ Therefore, VOSb₂O₄ is best described by a spin-1/2 Heisenberg AFM 1D chain without frustration, as suggested by Pashchenko *et al.*²

To know how reasonable the calculated $J_1 - J_3$ values are, we calculate the Curie-Weiss temperature θ of VOSb₂O₄ using them. Within the mean-field theory,¹⁷ θ is related to the spin exchange parameters $J_1 - J_3$ as follows:

$$\theta = \frac{S(S+1)}{3k_{B}} \sum_{i} z_{i} J_{i} \approx \frac{(J_{1}+J_{2})}{2k_{B}}$$

The evaluated θ is summarized in Table 1. The experimental value $\theta = -188 \text{ K}^1$ is well reproduced by using the spin exchange parameters obtained from our DFT+U calculations with U = 1 eV.

Conclusions

Our calculations for VOSb₂O₄ show that J₁ is strongly AFM and dominant, J₂ is AFM but substantially weaker than the J₁, and the interchain spin exchange J₃ is negligible. The experimental Curie-Weiss temperature of VOSb₂O₄ (*i.e.*, -188 K) is best reproduced by using the set of J₁ – J₃ values obtained from the DFT+U calculations with U = 1 eV. Thus, the magnetic properties of VOSb₂O₄ are best described by a spin-1/2 AFM 1D chain with no spin frustration.

Acknowledgments. This work was supported by a grant from the Kyung Hee University in 2010 (KHU-20100657). H.-J. Koo thanks the computing resources of the NERSC center and the HPC center of NCSU.

References

- 1. Darriet, B.; Bovin, J.; Galy, J. J. Solid State Chem. 1976, 19, 205.
- Pashchenko, V. A.; Sulpice, A.; Mila, F.; Stepanov, A.; Wyder, P. *Eur. J. Phys. B* 2001, 21, 473.
- 3. Chaplygin, I.; Hayn, R. Phys. Rev. B 2004, 70, 64510.
- 4. Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.
- 5. Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15.
- 6. Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.
- Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
- Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. *Phys. Rev. B* 1998, *57*, 1505.
- For reviews see: (a) Whangbo, M.-H.; Koo, H.-J.; Dai, D. J. Solid State Chem. 2003, 176, 417. (b) Whangbo, M.-H.; Dai, D.; Koo, H.-J. Solid State Sci. 2005, 7, 827.
- 10. Noodleman, L. J. Chem. Phys. 1981, 74, 5737.
- 11. Illas, F.; Moreira, I. de P. R.; de Graaf, C.; Barone, V. *Theor. Chem. Acc.* **2000**, *104*, 265.
- (a) Chartier, A.; D'Arco, P.; Dovesi, R.; Saunders, A. R. *Phys. Rev. B* 1999, *60*, 14042. (b) Dai., D.; Whangbo, M.-H.; Koo, H.-J.; Rocquefelte, X.; Jobic, S.; Villesuzanne, A. *Inorg. Chem.* 2005, *44*, 2407. (c) Koo, H.-J. *Bull. Korean Chem. Soc.* 2011, *32*, 467.
- Chaplygin, I.; Hayn, R.; Koepernik, K. Phys. Rev. B 1999, 60, R12557.
- 14. Rosner, H.; Eschring, H.; Hayn, R.; Drechsler, S.-L.; Málek, J. *Phys. Rev. B* **1997**, *56*, 3402.
- 15. Dai, D.; Whangbo, M.-H. J. Chem. Phys. 2001, 114, 2887.
- 16. Dai, D.; Whangbo, M.-H. J. Chem. Phys. 2003, 118, 29.
- 17. Smart, J. S. *Effective Field Theory of Magnetism*; Saunders: Philadelphia, 1966.