• Title/Summary/Keyword: Spin Coater

Search Result 51, Processing Time 0.024 seconds

Improvement of Permeation of Applied Multi-layer Encapsulation of Thin Films on Ethylene Terephthalate(PET) (고분자 기판위에 다층 구조의 박막형 보호층을 적용한 투습률 향상)

  • Kim Jong-Hwan;Han Jin-Woo;Kim Young-Hwan;Seo Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.255-259
    • /
    • 2006
  • In this paper, the inorganic-organic thin film encapsulation layer was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, Sputter and Spin-Coater system, the various kinds of inorganic and organic thin-films were deposited onto the Ethylene Terephthalate(PET) and their interface properties between organic and inorganic layer were investigated. In this investigation, the SiON and Polyimide(PI) layer showed the most suitable properties. Under these conditions, the WVTR(water vapour transition rate) for PET can be reduced from level of $0.57\;g/m^2{\cdot}day$ (bare subtrate) to $1{\times}10^{-5}\;g/m^2{\cdot}day$ after application of a SiON and Polyimide layer. These results indicates that the SiON/PI/SiON/PI/PET barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.

Development of OLED Passivation Method for High efficency and life time (고효율 및 장수명의 OLED Passivation 기술 개발)

  • Han, Jin-Woo;Kim, Jong-Hwan;Kim, Young-Hwan;Seo, Dae-Shik;Kim, Yong-Hoon;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.267-268
    • /
    • 2005
  • In this paper, the inorganic-organic thin film encapsulation layer was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, Sputter and Spin-Coater system, the various kinds of inorganic and organic thin-films were deposited onto the Ethylene Terephthalate(PET) and their interface properties between organic and inorganic layer were investigated. In this investigation, the SiON and Polyimide(PI) layer showed the most suitable properties. Under these conditions, the WVTR(water vapour transition rate) for PET can be reduced from level of 0.57 g/$m^2$/day (bare subtrate) to $1{\times}10^{-5}$ /$m^2$/day after application of a SiON and Polyimide layer. These results indicates that the SiON/PI/SiON/PI/PET barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.

  • PDF

Development and Performance Evaluation of Polymer Micro-actuator using Segmented Polyurethane and Polymer Composite Electrode (세그먼트화 폴리우레탄을 이용한 고분자 마이크로 액츄에이터의 제작 및 고분자 전극의 상태에 따른 구동성능)

  • Jung Young Dae;Park Han Soo;Jo Nam Ju;Jeong Hae Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.180-187
    • /
    • 2005
  • This paper is focused on the development of the flexible electrode for disc-type polymer actuators using Segmented Polyurethane(SPU). This paper consists of two parts. The one is about the mechanical property such as elastic modulus. these parameters mainly affect behaviors of polymer actuators and the other is about the electro-chemical property such as the surface resistance of the composite electrode affects the strength of electrostatic force, results in the deformation of polymer actuators. The Young's modulus was measured by UTM. As result, by increasing the modulus of a body of polymer actuators, the maximum displacement of polymer actuators are decreased. The surface resistance of the electrode was measured by 4 point probe system. Compared with the conductive silver grease, the displacement of polymer actuators using carbon black(CB) composite electrodes is comparably small but CB composite electrode should be the practical approach for the improvement of the performance of all-solid actuators, compared with another types of electrode materials.

Improvement of Permeation of applied Multi-Layer Encapsulation of thin films on Ethylene Terephthalate(PET) (고분자 기판위의 다층 보호막의 성능 평가)

  • Kim, Jong-Hwan;Han, Jin-Woo;Kang, Hee-Jin;Kim, Jong-Yeon;Moon, Hyun-Chan;Choi, Sung-Ho;Park, Kwang-Bum;Kim, Tae-Ha;Kim, Hwi-Woon;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.60-61
    • /
    • 2006
  • In this paper, the inorganic-organic thin film encapsulation layer was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, Sputter and Spin-Coater system, the various kinds of inorganic and organic thin-films were deposited onto the Ethylene Terephthalate(PET) and their interface properties between organic and inorganic layer were investigated. Results indicates that the SiON/PI/SiON/PI/PET barrier coatings have high potential for flexible organic light-emitting diode(OLEO) applications.

  • PDF

Study of Diffraction Efficiency Values for Photopolymer Films Added TiO2 Nanoparticles (TiO2 나노 입자를 첨가한 광고분자 필름의 회절효율 값에 대한 연구)

  • Her, Ki-Young;Kim, Dae-Heum
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.123-127
    • /
    • 2009
  • In order to improve the diffraction efficiency of the photopolymer, we prepared a $TiO_2$ added photopolymer and investigated the optical properties. Prepared photopolymer films are based on polyvinyl alcohol (PVA) as a polymer binder, acryl amide (AA) as a photo-polymerizable monomer, triethanolamine (TEOA) as an initiator, and eosin Y as a sensitizer at 532 nm. To prepare the photopolymer films with the uniform thickness, the constant amount (2.5 ml) of the photopolymer solution was dropped on the glass and spread using a spin coater. Then films were dried for 72 hrs in a darkroom ($20^{\circ}C$, 40% RH) prior to the optical measurement. Then, the diffraction efficiencies of both the photopolymer films containing $TiO_2$ and non-contained films were measured with the various incident angles ($20{\sim}70^{\circ}$). Therefore, $TiO_2$ added photopolymer showed 5% higher diffraction efficiency than neat photopolymer without $TiO_2$ addition. The addition of $TiO_2$ into the photopolymer showed the high diffraction efficiency (over 70%) at broad range ($20{\sim}70^{\circ}C$) of the incident angle.

Fabrication Thermal Responsive Tunable ZnO-stimuli Responsive Polymer Hybrid Nanostructure

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Hwang, Ki-Hwan;Ju, Dong-Woo;Jeon, So-Hyoun;Seo, Hyeon-Jin;Yun, Sang-Ho;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.429.2-429.2
    • /
    • 2014
  • ZnO nanowire is known as synthesizable and good mechanical properties. And, stimuli-responsive polymer is widely used in the application of tunable sensing device. So, we combined these characteristics to make precise tunable sensing devise. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using nanosphere template with various conditions via hydrothermal process. Also, pH-temperature dependant tuning ability of nanostructure was studied. The brief experimental scheme is as follow. First, Zno seed layer was coated on a si wafer ($20{\times}20mm$) by spin coater. And then $1.15{\mu}m$ sized close-packed PS nanospheres were formed on a cleaned si substrate by using gas-liquid-solid interfacial self-assembly method. After that, zinc oxide nanowires were synthesized using hydrothermal method. Before the wire growth, to specify the growth site, heat treatment was performed. Finally, NIPAM(N-Isopropylacrylamide) was coated onto as-fabricated nanostructure and irradiated by UV light to form the PNIPAM network. The morphology, structures and optical properties are investigated by FE-SEM(Field Emission Scanning electron Microscopy), XRD(X-ray diffraction), OM(Optical microscopy), and WCA(water contact angle).

  • PDF

Improvement of Device Characteristic on Solution-Processed Al-Zn-Sn-O Junctionless Thin-Film-Transistor Using Microwave Annealing

  • Mun, Seong-Wan;Im, Cheol-Min;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.347.2-347.2
    • /
    • 2014
  • 최근, 비정질 산화물 반도체 thin film transistor (TFT)는 수소화된 비정질 실리콘 TFT와 비교하여 높은 이동도와 큰 on/off 전류비, 낮은 구동 전압을 가짐으로써 빠른 속도가 요구되는 차세대 투명 디스플레이의 TFT로 많은 연구가 진행되고 있다. 한편, 기존의 Thin-Film-Transistor 제작 시 우수한 박막을 얻기 위해서는 $500^{\circ}C$ 이상의 높은 열처리 온도가 필수적이며 이는 유리 기판과 플라스틱 기판에 적용하는 것이 적합하지 않고 높은 온도에서 수 시간 동안 열처리를 수행해야 하므로 공정 시간 및 비용이 증가하게 된다는 단점이 있다. 이러한 점을 극복하기 위해 본 연구에서는 간단하고, 낮은 제조비용과 대면적의 박막 증착이 가능한 용액공정을 통하여 박막 트랜지스터를 제작하였으며 thermal 열처리와 microwave 열처리 방식에 따른 전기적 특성을 비교 및 분석하고 각 열처리 방식의 열처리 온도 및 조건을 최적화하였다. P-type bulk silicon 위에 산화막이 100 nm 형성된 기판에 spin coater을 이용하여 Al-Zn-Sn-O 박막을 형성하였다. 그리고, baking 과정으로 $180^{\circ}C$의 온도에서 10분 동안의 열처리를 실시하였다. 연속해서 Photolithography 공정과 BOE (30:1) 습식 식각 과정을 이용해 활성화 영역을 형성하여 소자를 제작하였다. 제작 된 소자는 Junctionless TFT 구조이며, 프로브 탐침을 증착 된 채널층 표면에 직접 접촉시켜 소스와 드레인 역할을 대체하여 동작시킬 수 있어 전기적 특성을 간단하고 간략화 된 공정과정으로 분석할 수 있는 장점이 있다. 열처리 조건으로는 thermal 열처리의 경우, furnace를 이용하여 $500^{\circ}C$에서 30분 동안 N2 가스 분위기에서 열처리를 실시하였고, microwave 열처리는 microwave 장비를 이용하여 각각 400 W, 600 W, 800 W, 1000 W로 15분 동안 실시하였다. 그 결과, furnace를 이용하여 열처리한 소자와 비교하여 microwave를 통해 열처리한 소자에서 subthreshold swing (SS), threshold voltage (Vth), mobility 등이 비슷한 특성을 내는 것을 확인하였다. 따라서, microwave 열처리 공정은 향후 저온 공정을 요구하는 MOSFET 제작 시의 훌륭한 대안으로 사용 될 것으로 기대된다.

  • PDF

Adhesive bonding using thick polymer film of SU-8 photoresist for wafer level package

  • Na, Kyoung-Hwan;Kim, Ill-Hwan;Lee, Eun-Sung;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.325-330
    • /
    • 2007
  • For the application to optic devices, wafer level package including spacer with particular thickness according to optical design could be required. In these cases, the uniformity of spacer thickness is important for bonding strength and optical performance. Packaging process has to be performed at low temperature in order to prevent damage to devices fabricated before packaging. And if photosensitive material is used as spacer layer, size and shape of pattern and thickness of spacer can be easily controlled. This paper presents polymer bonding using thick, uniform and patterned spacing layer of SU-8 2100 photoresist for wafer level package. SU-8, negative photoresist, can be coated uniformly by spin coater and it is cured at $95^{\circ}C$ and bonded well near the temperature. It can be bonded to silicon well, patterned with high aspect ratio and easy to form thick layer due to its high viscosity. It is also mechanically strong, chemically resistive and thermally stable. But adhesion of SU-8 to glass is poor, and in the case of forming thick layer, SU-8 layer leans from the perpendicular due to imbalance to gravity. To solve leaning problem, the wafer rotating system was introduced. Imbalance to gravity of thick layer was cancelled out through rotating wafer during curing time. And depositing additional layer of gold onto glass could improve adhesion strength of SU-8 to glass. Conclusively, we established the coating condition for forming patterned SU-8 layer with $400{\mu}m$ of thickness and 3.25 % of uniformity through single coating. Also we improved tensile strength from hundreds kPa to maximum 9.43 MPa through depositing gold layer onto glass substrate.

Fabrication of $100{\mu}m$ High Metallic Structure Using Negative Thick Photoresist and Electroplating (Negative Thick Photoresist를 이용한 $100{\mu}m$ 높이의 금속 구조물의 제작에 관한 연구)

  • Chang, Hyun-Kee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2541-2543
    • /
    • 1998
  • This paper describes the fabrication process to fabricate metallic structure of high aspect ratio using LlGA-like process. SU-8 is used as an electroplating mold. SU-8 is an epoxy-based photoresist, designed for ultrathick PR structure with single layer coating [1,2]. We can get more than $100{\mu}m$ thick layer by single coating with conventional spin coater, and applying multiple coating can make thicker layers. In the experiments, we used different kinds of SU-8, having different viscosity. To optimize the conditions for mold fabrication process, experiments are performed varying spinning time and speed, soft-bake, develop and PEB (Post Expose Bake) condition. With the optimized condition, minimum line and space of $3{\mu}m$ pattern with a thickness of $40{\mu}m$ and $4{\mu}m$ pattern with a thickness of $130{\mu}m$ were obtained. Using the patterned PR as a plating mold, metallic structure was fabricated by electroplating. We have fabricated a electroplated nickel comb actuator using SU-8 as plating mold. The thickness of PR mold is $45{\mu}m$ and that of plated nickel is$40{\mu}m$. Minimum line of the mold is $5{\mu}m$. Patterned metallic layer or polymer layer, which has selectivity with the structural plated metallic layer, can be used as sacrificial layer for fabrication of free-standing structure.

  • PDF

Fabrication of Stretchable Ag Nanowire Electrode and its Electrochromic Application (신축성있는 Ag 나노와이어 전극의 제조 및 전기변색 응용)

  • Lee, Jin-Young;Han, Song-Yi;Nah, Yoon-Chae;Park, Jongwoon
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.87-91
    • /
    • 2019
  • We report on stretchable electrochromic films of poly(3-hexylthiophene) (P3HT) fabricated on silver nanowire (AgNW) electrodes. AgNWs electrodes are prepared on polydimethylsiloxane (PDMS) substrates using a spray coater for stretchable electrochromic applications. On top of the AgNW electrode, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is introduced to ensure a stable resistance over the electrode under broad strain range by effectively suppressing the protrusion of AgNWs from PDMS. This bilayer electrode exhibits a high performance as a stretchable substrate in terms of sheet resistance increment by a factor of 1.6, tensile strain change to 40 %, and stretching cycles to 100 cycles. Furthermore, P3HT film spin-coated on the bilayer electrode shows a stable electrochromic coloration within an applied voltage, with a color contrast of 28.6 %, response time of 4-5 sec, and a coloration efficiency of $91.0cm^2/C$. These findings indicate that AgNWs/PEDOT:PSS bilayer on PDMS substrate electrode is highly suitable for transparent and stretchable electrochromic devices.