• Title/Summary/Keyword: Spin

Search Result 3,823, Processing Time 0.044 seconds

The Spin-Orbit Alignment of Dark Matter Halo Pairs: Dependence on the Halo Mass and Environment

  • An, Sung-Ho;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.35.1-35.1
    • /
    • 2019
  • We present a statistical analysis on the spin-orbit alignment of dark matter halo pairs in cosmological simulations. The alignment is defined as the angular concurrence between the halo spin vector (${\vec{S}}$) and the orbital angular momentum vector (${\vec{L}}$) of the major companion. We identify interacting halo pairs with the mass ratios from 1:1 to 1:3, with the halo masses of 10.8 < $Log(M_{halo}/M_{sun}$) < 13.0, and with the separations smaller than a sum of their virial radii ($R_{12}<R_{1,vir}+R_{2,vir}$). Based on the total energy ($E_{12}$), the pairs are classified into flybys ($E_{12}$ > 0) and mergers ($E_{12}{\leq}0$). By measuring the angle (${\theta}_{SL}$) between ${\vec{S}}$ and ${\vec{L}}$, we confirm a strong spin-orbit alignment signal such that the halo spin is preferentially aligned with the orbital angular momentum of the major companion. We find that the signal of the spin-orbit alignment for the flyby is weaker than that for the merger. We also find an unexpected excess signal of the spin-orbit alignment at $cos{\theta}_{SL}{\sim}0.25$. Both the strength of the spin-orbit alignment and the degree of the excess depend only on the environment. We conclude that the halo spin is determined by the accretion in a preferred direction set by the ambient environment.

  • PDF

FINITE TEMPERATURE EFFECTS ON SPIN POLARIZATION OF NEUTRON MATTER IN A STRONG MAGNETIC FIELD

  • Isayev, Alexander A.;Yang, Jong-Mann
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.5
    • /
    • pp.161-168
    • /
    • 2010
  • Magnetars are neutron stars possessing a magnetic field of about $10^{14}-10^{15}$ G at the surface. Thermodynamic properties of neutron star matter, approximated by pure neutron matter, are considered at finite temperature in strong magnetic fields up to $10^{18}$ G which could be relevant for the inner regions of magnetars. In the model with the Skyrme effective interaction, it is shown that a thermodynamically stable branch of solutions for the spin polarization parameter corresponds to the case when the majority of neutron spins are oriented opposite to the direction of the magnetic field (i.e. negative spin polarization). Moreover, starting from some threshold density, the self-consistent equations have also two other branches of solutions, corresponding to positive spin polarization. The influence of finite temperatures on spin polarization remains moderate in the Skyrme model up to temperatures relevant for protoneutron stars. In particular, the scenario with the metastable state characterized by positive spin polarization, considered at zero temperature in Phys. Rev. C 80, 065801 (2009), is preserved at finite temperatures as well. It is shown that, above certain density, the entropy for various branches of spin polarization in neutron matter with the Skyrme interaction in a strong magnetic field shows the unusual behavior, being larger than that of the nonpolarized state. By providing the corresponding low-temperature analysis, we prove that this unexpected behavior should be related to the dependence of the entropy of a spin polarized state on the effective masses of neutrons with spin up and spin down, and to a certain constraint on them which is violated in the respective density range.

Spin in Randomised Clinical Trial Reports of Interventions for Obesity (비만 중재 관련 무작위배정 비교임상연구 보고의 spin 연구)

  • Lee, Sle;Won, Jiyoon;Kim, Seoyeon;Park, Su Jeong;Lee, Hyangsook
    • Korean Journal of Acupuncture
    • /
    • v.34 no.4
    • /
    • pp.251-264
    • /
    • 2017
  • Objectives : To identify the prevalence and types of spin in randomised controlled trials(RCTs) of obesity with statistically non-significant results for primary outcomes to provide adequate reporting directions. Methods : Spin is specific reporting strategy that could lead the readers to misinterpret the results of RCTs. RCTs on obesity with statistically non-significant primary outcomes published from July 2015 to June 2016 were retrieved from PubMed. All included RCTs were classified into 3 intervention categories. The identification and classification of spin in the included articles was performed by two independent researchers. Results : Among 46 RCTs with statistically non-significant primary outcomes, 32 studies were assessed as having at least one spin in title, abstract or main text. Of these, 9 articles were on complementary and alternative medicine, 7 on western medicine and 16 on dietary supplement and exercise. The frequency of spin among the types of interventions was similar. The most common type of spin was 'focusing on statistical significance within-group comparison' in results section of abstract and main text, and 'focusing only on treatment effectiveness with no consideration of statistical significance' in conclusion section of abstract and main text. Studies where random sequence generation was appropriately done was less likely to have spin. Conclusions : As a majority of obesity RCTs have spin, researchers should pay more attention to adequately interpreting and reporting statistically non-significant results.

Perpendicular Spin-transfer Torque in Asymmetric Magnetic Tunnel Junctions: Material Parameter Dependence (비대칭 자기터널접합에서의 수직 스핀 전달 토크: 물질 변수에 대한 의존성)

  • Han, Jae-Ho;Lee, Hyun-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.2
    • /
    • pp.52-55
    • /
    • 2011
  • Spin-transfer torque is a useful tool to control the magnetic state in nanostructures. In magnetic tunnel junctions, the spin-transfer torque has two components, the in-plane spin torque and the perpendicular spin torque. While properties of the in-plane spin-transfer torque are relatively well understood, properties of the perpendicular spin-transfer torque still remain controversial. A recent experiment demonstrated that in asymmetric magnetic tunnel junctions, the bias voltage dependence of the perpendicular spin-transfer torque contains both linear and quadratic terms in the bias. However it still remains unexplored how the bias voltage dependence changes as a function of material parameters. In this paper, we systematically investigate the perpendicular spin-transfer torque in asymmetric magnetic tunnel junction by varying spin splitting energy, work function difference, and Fermi energy of the ferromagnetic metal leads.

Calculation on Electronic State of $MnO_2$ Oxide Semiconductor with other initial spin conditions by First Principle Molecular Orbital Method (제1원리 분자궤도계산법에 의한 초기 spin 조건에 따른 $MnO_2$ 반도체의 전자상태 변화 계산)

  • Lee, Dong-Yoon;Kim, Bong-Seo;Song, Jae-Sung;Kim, Hyun-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.148-151
    • /
    • 2003
  • The spin density of ${\beta}-MnO_2$ structure was theoretically investigated by $DV-X_{\alpha}$ (the discrete variation $X{\alpha}$) method, which is a sort of the first principle molecular orbital method using Hatre-Fock-Slater approximation. The used cluster model was $[Mn_{14}O_{56}]^{-52}$. The ${\beta}-MnO_2$ is a paramagnetic oxide semiconductor material having the energy band gap of 0.18 eV and an 3 loan-pair electrons in the 3d orbital of an cation. This material exhibits spin-only magnetism and has the magnetic ordering temperature of 94 K. Below this temperature its magnetism appears as antiferromagnetism. The calculations of electronic state showed that if the initial spin condition of input parameters changed, the magnetic state changed from paramagnetic to antiferromagnetic. When d orbital of all Mn atoms in cluster had same initial spin state as only up spin, paramagnetic spin density distribution appeared by the calculation. On the other way, d orbital had alternately changed spin state along special direction the resulted spin distribution showed antiferromagnetism.

  • PDF

Magneto-transport properties of CVD grown MoS2 lateral spin valves

  • Jeon, Byeong-Seon;Lee, Sang-Seon;Hwang, Chan-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.336-336
    • /
    • 2016
  • We have investigated magneto-transport properties in a MoS2 lateral spin-valve structures for different ferromagnetic CoFe electrode shapes and MoS2 channel lengths. For these devices, high quality and large-scale MoS2 thin films were synthesized through sulfurization of epitaxial MoO3 films and these sulfurized-MoO3 thin films properties are in good agreements with measurements on exfoliated MoS2 film. Magneto-transport measurements show a clear rectangular magnetoresistance signal of 0.16% and a spin polarization of 0.00012%. By using the one-dimensional spin diffusion equation, we extracted the spin diffusion length and coefficient, finding them to be 12 nm and $1.44{\times}10-3cm2/s$, respectively. These small values of magnetoresistance and spin polarization could be enhanced by appeasement of conductivity mismatch between the ferromagnet and semiconductor interface.

  • PDF

Vibration Analysis of Spin Etcher (Spin Etcher의 진동 분석)

  • 임경화;이은경;조중근
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.1
    • /
    • pp.15-19
    • /
    • 2003
  • Spin etcher can process frontside and backside on the wafer, which is used for etching, stripping, cleaning and wafer reclamation. A new generation of spin etchers has been designed to meet 300mm wafer processing. The larger header and higher spin speed make vibration problem a severe problem in developing equipments. This study shows schematic process of solving practical vibration problems, where it is required to analyze the principal ca uses of vibration problem and find out the method of vibration reduction in spin etcher. The vibration under normal operation is measured in time domain and is analyzed in frequency domain. And modal parameters are obtained through modal test. Using the modal parameters from experiments, the model of finite element method is formulated. From diagnosis using many measurements and analyses, it can be shown that main cause of vibration is unbalance of head.

  • PDF