• Title/Summary/Keyword: Spent Fuel Management

Search Result 165, Processing Time 0.021 seconds

Korean Status and Prospects for Radioactive Waste Management

  • Song, M.J.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The safe management of radioactive waste is a national task required for sustainable generation of nuclear power and for energy self-reliance in Korea. Since the initial introduction of nuclear power to Korea in 1978, rapid growth in nuclear power has been achieved. This large nuclear power generation program has produced a significant amount of radioactive waste, both low- and intermediate-level waste (LILW) and spent nuclear fuel (SNF); and the amount of waste is steadily growing. For the management of LILW, the Wolsong LILW Disposal Center, which has a final waste disposal capacity of 800,000 drums, is under construction, and is expected to be completed by June 2014. Korean policy about how to manage the SNF has not yet been decided. In 2004, the Atomic Energy Commission decided that a national policy for SNF management should be established considering both technological development and public consensus. Currently, SNF is being stored at reactor sites under the responsibility of plant operator. The at-reactor SNF storage capacity will run out starting in 2024. In this paper, the fundamental principles and steps for implementation of a Korean policy for national radioactive waste management are introduced. Korean practices and prospects regarding radioactive waste management are also summarized, with a focus on strategy for policy-making on SNF management.

Development of the slitting device on separation study of pellet and hull (펠릿과 헐의 분리 연구를 위한 슬리팅 장치 개발)

  • 정재후;윤지섭;홍동희;김영환;진재현;박기용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.236-239
    • /
    • 2003
  • The spent fuel slitting device is an equipment developed in order to feed UO$_2$pellet to the dry pulverizing/mixing device. In this study, we have compared and analyzed the handling method of the slitting and that of the pellet and hull, processing time, separating time for 20kgHM, the number of blades, on the existing slitting device using in DUPIC, and spent fuel management technology research and test facility. Also, we have compared and analyzed about an advantage and weak point, designing and producing, processing, establishment, operation, maintenance about the vertical and horizontal slitting device. Based on these results, we have developed the vertical slitting device. By using the results, we have enhanced the slitting processing time(over 40%)in comparison with DUPIC device, and it will is effectively applied to available data for designing and producing of the hot test facility.

  • PDF

On-Site Transport and Storage of Spent Nuclear Fuel at Kori NPP by KN-12 Transport Cask (KN-12 운반용기를 이용한 고리 사용후핵연료 소내수송.저장)

  • Chung, Sung-Hwan;Baeg, Chang-Yeal;Choi, Byung-Il;Yang, Ke-Hyung;Lee, Dae-Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • Since 2002, more than 400 PWR spent nuclear fuel assemblies have been transported and stored on-site using transport casks in order to secure the storage capacity of PWR spent nuclear fuel of Kori nuclear power plant. The complete on-site transport system, which includes KN-12 transport casks, the related equipment and transport vehicles, had been developed and provided. KN-12 transport casks were designed, fabricated and licensed in accordance with Korean and IAEA's transport regulations, and the related equipment was also provided in accordance with the related regulations. The on-site transport and storage operation using two KN-12 casks and the related equipment has been conducted, and the strict Quality Control and Radiation Safety Management through the whole process has been carried out so as to achieve the required safety and reliability of the on-site transport of spent nuclear fuel.

  • PDF

A Status of Technology and Policy of Nuclear Spent Fuel Treatment in Advanced Nuclear Program Countries and Relevant Research Works in Korea (선진 원자력발전국의 사용후핵연료 처리기술 및 정책현황과 우리나라의 관련연구 현황)

  • You, Gil-Sung;Choung, Won-Myung;Ku, Jeong-Hoe;Cho, Il-Je;Kook, Dong-Hak;Kwon, Kie-Chan;Lee, Won-Kyung;Lee, Eun-Pyo;Hong, Dong-Hee;Yoon, Ji-Sup;Park, Seong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.339-350
    • /
    • 2007
  • Status on the spent nuclear fuel management policy and R&D plan of the major countries is surveyed. Also the prospect of the future R&D plan is suggested. Recently so-called fuel cycle nations, which have the reprocess policy of the spent fuel, announced new spent fuel management policy based on the advanced fuel cycle technology. The policy is focused to transmute highly radioactive material and material having a very long half-life, and to recycle the Pu and U contained in the spent fuel. In this way the radio-foxily of the spent fuel as well as the amount of the high level waste to be eventually disposed can greatly be reduced. Most of countries selected the wet process as a primary option for the treatment of the spent fuel since the advanced wet process, which is based on the existing PUREX process, looks more feasible as compared with the dry process. The wet process, however, is much more sensitive in terms of proliferation-resistance compared with the dry process. The pure Pu can easily be obtained by simply modifying the process. On the other hand the pure Pu can not be extracted in the dry process based on the high temperature molten salt process such as a pyroprocess. Even though the pyroprocess technology is very premature, it has a great merit. Thus it is necessary for Korea to have a long term strategy for pursuing a spent fuel treatment technology with a proliferation resistance and a great merit for the GEN-IV fuel cycles. Pyroprocess is one of the best candidates to satisfy these purposes.

  • PDF

Irradiation Effect on Silo Dry Storage Systems for CANDU Spent Nuclear Fuel

  • Taehyung Na;Yeji Kim;Donghee Lee;Taehyeon Kim;Sunghwan Chung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.117-128
    • /
    • 2024
  • The 300 concrete silo systems installed and operated at the site of Wolsong nuclear power plant (NPP) have been storing CANDU spent nuclear fuel (SNF) under dry conditions since 1992. The dry storage system must be operated safely until SNF is delivered to an interim storage facility or final repository located outside the NPP in accordance with the SNF management policy of the country. The silo dry storage system consists of a concrete structure, liner steel plate in the inner cavity, and fuel basket. Because the components of the silo system are exposed to high energy radiation owing to the high radioactivity of SNF inside, the effects of irradiation during long-term storage must be analyzed. To this end, material specimens of each component were manufactured and subjected to irradiation and strength tests, and mechanical characteristics before and after irradiation were examined. Notably, the mechanical characteristics of the main components of the silo system were affected by irradiation during the storage of spent fuel. The test results will be used to evaluate the long-term behavior of silo systems in the future.

Risk Assessment Strategy for Decommissioning of Fukushima Daiichi Nuclear Power Station

  • Yamaguchi, Akira;Jang, Sunghyon;Hida, Kazuki;Yamanaka, Yasunori;Narumiya, Yoshiyuki
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.442-449
    • /
    • 2017
  • Risk management of the Fukushima Daiichi Nuclear Power Station decommissioning is a great challenge. In the present study, a risk management framework has been developed for the decommissioning work. It is applied to fuel assembly retrieval from Unit 3 spent fuel pool. Whole retrieval work is divided into three phases: preparation, retrieval, and transportation and storage. First of all, the end point has been established and the success path has been developed. Then, possible threats, which are internal/external and technical/societal/management, are identified and selected. "What can go wrong?" is a question about the failure scenario. The likelihoods and consequences for each scenario are roughly estimated. The whole decommissioning project will continue for several decades, i.e., long-term perspective is important. What should be emphasized is that we do not always have enough knowledge and experience of this kind. It is expected that the decommissioning can make steady and good progress in support of the proposed risk management framework. Thus, risk assessment and management are required, and the process needs to be updated in accordance with the most recent information and knowledge on the decommissioning works.

Manipulator Path Planning Using Collision Detection Function in Virtual Environment (가상환경에서의 충돌감지기능을 이용한 조작기 경로계획)

  • 이종열;김성현;송태길;정재후;윤지섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1651-1654
    • /
    • 2003
  • The process equipment for handling high level radioactive materials, such as spent nuclear fuel, is operated within a sealed facility, called a hot cell, due to high radioactivity. Thus, this equipment should be maintained and repaired by remotely operated manipulator. In this study, to carry out the sale and effective maintenance of the process equipment installed in the hot cell by a servo type manipulator, a collision free motion planning method of the manipulator using virtual prototyping technology is suggested. To do this, the parts are modelled in 3-D graphics, assembled, and kinematics are assigned and the virtual workcell is implemented in the graphical environment which is the same as the real environment. The method proposed in this paper is to find the optimal path of the manipulator using the function of the collision detection in the graphic simulator. The proposed path planning method and this graphic simulator of manipulator can be effectively used in designing of the maintenance processes for the hot cell equipment and enhancing the reliability of the spent fuel management.

  • PDF

Development of Spent Nuclear Fuel Transportation Worker Exposure Scenario by Dry Storage Methods (건식 저장방식별 사용후핵연료 운반 작업자 피폭시나리오 개발)

  • Geon Woo Son;Hyeok Jae Kim;Shin Dong Lee;Min Woo Kwak;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.43-52
    • /
    • 2024
  • Currently, there are no interim storage facilities and permanent disposal facilities in Korea, so all spent nuclear fuels are temporarily stored. However, the temporary storage facility is approaching saturation, and as a measure to this, the 2nd Basic Plan for the Management of High-Level Radioactive Waste presented an operation plan for dry interim storage facilities and dry temporary storage facilities on the NPP on-site. The dry storage can be operated in various ways, and to select the optimal dry storage method, the reduction of exposure for workers must be considered. Accordingly, it is necessary to develop a worker exposure scenario according to the dry storage method and evaluate and compare the radiological impact for each method. The purpose of this study is to develop an exposure scenario for workers transporting spent nuclear fuel by dry storage method. To this end, first, the operation procedure of the foreign commercial spent nuclear fuel dry storage system was analyzed based on the Final Safety Analysis Report (FSAR). 1) the concrete overpack-based system, 2) the metal overpack-based system, and 3) the vertical storage module-based system were selected for analysis. Factors were assumed that could affect the type of work (working distance, working hours, number of workers, etc.) during transportation work. Finally, the work type of the processes involved in transporting spent nuclear fuel by dry storage method was set, and an exposure scenario was developed accordingly. The concrete overpack method, the metal overpack method, and the vertical storage module method were classified into a total of 31, 9, and 23 processes, respectively. The work distance, work time, and number of workers for each process were set. The product of working hours and number of workers (Man-hour) was set high in the order of concrete overpack method, vertical storage module method, and metal overpack method, and short-range work (10 cm) was most often applied to the concrete overpack method. The results of this study are expected to be used as basic data for performing radiological comparisons of transport workers by dry storage method of spent nuclear fuel.

Evaluation of Neutron Flux Accounting for Shadowing Effect Among the Dry Storage Casks (경수로 사용후핵연료 건식저장용기 간 중성자 표면선속 간섭률 평가)

  • Min Woo Kwak;Shin Dong Lee;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.2
    • /
    • pp.133-140
    • /
    • 2024
  • The Korean 2nd basic plan for management of high-level radioactive waste presented a plan to manage spent nuclear fuel through dry storage facilities in NPP on-site. For the construction and operation of the facility, it is necessary to develop the monitoring system of the integrity of spent nuclear fuel before operation. NUREG-1536 recommends that the theoretical cask array, typically in the 2×10 array, should account for shadowing effect among the dry storage casks. The objective of this study was to evaluate neutron flux accounting for shadowing effect among dry storage casks. The neutron release rate was evaluated using ORIGEN based on the design basis fuel condition. And the simulation of dry storage casks and evaluation of the shadowing effect were performed using MCNP. Shadowing effect of other dry storage casks was the highest at the center of the dry storage facility of the 2×10 array compared with the outside of the cask. The shadowing effect of neutron flux on the surface among the metal casks was approximately 18% at point 1, 23% at point 2, and 43% at point 3. For the concrete casks, the shadowing effect of neutron flux on the surface was approximately 46% at point 1, 51% at point 2, and 52% at point 3. This means that correction is necessary to monitor the integrity of spent nuclear fuel in each dry storage cask through evaluation of shadowing effect. The results of this study will be used for comparative analysis of neutron measurement data from spent nuclear fuels in dry storage cask. Additionally, the neutron flux evaluation procedure used in this study could be used as the basic data of safety assessment of dry storage cask and development of safety guide.

SHIELDING ANALYSIS OF DUAL PURPOSE CASKS FOR SPENT NUCLEAR FUEL UNDER NORMAL STORAGE CONDITIONS

  • Ko, Jae-Hun;Park, Jea-Ho;Jung, In-Soo;Lee, Gang-Uk;Baeg, Chang-Yeal;Kim, Tae-Man
    • Nuclear Engineering and Technology
    • /
    • v.46 no.4
    • /
    • pp.547-556
    • /
    • 2014
  • Korea expects a shortage in storage capacity for spent fuels at reactor sites. Therefore, a need for more metal and/or concrete casks for storage systems is anticipated for either the reactor site or away from the reactor for interim storage. For the purpose of interim storage and transportation, a dual purpose metal cask that can load 21 spent fuel assemblies is being developed by Korea Radioactive Waste Management Corporation (KRMC) in Korea. At first the gamma and neutron flux for the design basis fuel were determined assuming in-core environment (the temperature, pressure, etc. of the moderator, boron, cladding, $UO_2$ pellets) in which the design basis fuel is loaded, as input data. The evaluation simulated burnup up to 45,000 MWD/MTU and decay during ten years of cooling using the SAS2H/OGIGEN-S module of the SCALE5.1 system. The results from the source term evaluation were used as input data for the final shielding evaluation utilizing the MCNP Code, which yielded the effective dose rate. The design of the cask is based on the safety requirements for normal storage conditions under 10 CFR Part 72. A radiation shielding analysis of the metal storage cask optimized for loading 21 design basis fuels was performed for two cases; one for a single cask and the other for a $2{\times}10$ cask array. For the single cask, dose rates at the external surface of the metal cask, 1m and 2m away from the cask surface, were evaluated. For the $2{\times}10$ cask array, dose rates at the center point of the array and at the center of the casks' height were evaluated. The results of the shielding analysis for the single cask show that dose rates were considerably higher at the lower side (from the bottom of the cask to the bottom of the neutron shielding) of the cask, at over 2mSv/hr at the external surface of the cask. However, this is not considered to be a significant issue since additional shielding will be installed at the storage facility. The shielding analysis results for the $2{\times}10$ cask array showed exponential decrease with distance off the sources. The controlled area boundary was calculated to be approximately 280m from the array, with a dose rate of 25mrem/yr. Actual dose rates within the controlled area boundary will be lower than 25mrem/yr, due to the decay of radioactivity of spent fuel in storage.