• 제목/요약/키워드: Spectral Decomposition Method

검색결과 88건 처리시간 0.027초

A DUAL ITERATIVE SUBSTRUCTURING METHOD WITH A SMALL PENALTY PARAMETER

  • Lee, Chang-Ock;Park, Eun-Hee
    • 대한수학회지
    • /
    • 제54권2호
    • /
    • pp.461-477
    • /
    • 2017
  • A dual substructuring method with a penalty term was introduced in the previous works by the authors, which is a variant of the FETI-DP method. The proposed method imposes the continuity not only by using Lagrange multipliers but also by adding a penalty term which consists of a positive penalty parameter ${\eta}$ and a measure of the jump across the interface. Due to the penalty term, the proposed iterative method has a better convergence property than the standard FETI-DP method in the sense that the condition number of the resulting dual problem is bounded by a constant independent of the subdomain size and the mesh size. In this paper, a further study for a dual iterative substructuring method with a penalty term is discussed in terms of its convergence analysis. We provide an improved estimate of the condition number which shows the relationship between the condition number and ${\eta}$ as well as a close spectral connection of the proposed method with the FETI-DP method. As a result, a choice of a moderately small penalty parameter is guaranteed.

Application of Multispectral Remotely Sensed Imagery for the Characterization of Complex Coastal Wetland Ecosystems of southern India: A Special Emphasis on Comparing Soft and Hard Classification Methods

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan;Sanjeevi , Shanmugam
    • 대한원격탐사학회지
    • /
    • 제21권3호
    • /
    • pp.189-211
    • /
    • 2005
  • This paper makes an effort to compare the recently evolved soft classification method based on Linear Spectral Mixture Modeling (LSMM) with the traditional hard classification methods based on Iterative Self-Organizing Data Analysis (ISODATA) and Maximum Likelihood Classification (MLC) algorithms in order to achieve appropriate results for mapping, monitoring and preserving valuable coastal wetland ecosystems of southern India using Indian Remote Sensing Satellite (IRS) 1C/1D LISS-III and Landsat-5 Thematic Mapper image data. ISODATA and MLC methods were attempted on these satellite image data to produce maps of 5, 10, 15 and 20 wetland classes for each of three contrast coastal wetland sites, Pitchavaram, Vedaranniyam and Rameswaram. The accuracy of the derived classes was assessed with the simplest descriptive statistic technique called overall accuracy and a discrete multivariate technique called KAPPA accuracy. ISODATA classification resulted in maps with poor accuracy compared to MLC classification that produced maps with improved accuracy. However, there was a systematic decrease in overall accuracy and KAPPA accuracy, when more number of classes was derived from IRS-1C/1D and Landsat-5 TM imagery by ISODATA and MLC. There were two principal factors for the decreased classification accuracy, namely spectral overlapping/confusion and inadequate spatial resolution of the sensors. Compared to the former, the limited instantaneous field of view (IFOV) of these sensors caused occurrence of number of mixture pixels (mixels) in the image and its effect on the classification process was a major problem to deriving accurate wetland cover types, in spite of the increasing spatial resolution of new generation Earth Observation Sensors (EOS). In order to improve the classification accuracy, a soft classification method based on Linear Spectral Mixture Modeling (LSMM) was described to calculate the spectral mixture and classify IRS-1C/1D LISS-III and Landsat-5 TM Imagery. This method considered number of reflectance end-members that form the scene spectra, followed by the determination of their nature and finally the decomposition of the spectra into their endmembers. To evaluate the LSMM areal estimates, resulted fractional end-members were compared with normalized difference vegetation index (NDVI), ground truth data, as well as those estimates derived from the traditional hard classifier (MLC). The findings revealed that NDVI values and vegetation fractions were positively correlated ($r^2$= 0.96, 0.95 and 0.92 for Rameswaram, Vedaranniyam and Pitchavaram respectively) and NDVI and soil fraction values were negatively correlated ($r^2$ =0.53, 0.39 and 0.13), indicating the reliability of the sub-pixel classification. Comparing with ground truth data, the precision of LSMM for deriving moisture fraction was 92% and 96% for soil fraction. The LSMM in general would seem well suited to locating small wetland habitats which occurred as sub-pixel inclusions, and to representing continuous gradations between different habitat types.

CFD prediction of vortex induced vibrations and fatigue assessment for deepwater marine risers

  • Kamble, Chetna;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • 제6권4호
    • /
    • pp.325-344
    • /
    • 2016
  • Using 3D computational fluid dynamics techniques in recent years have shed significant light on the Vortex Induced Vibrations (VIV) encountered by deep-water marine risers. The fatigue damage accumulated due to these vibrations has posed a great concern to the offshore industry. This paper aims to present an algorithm to predict the crossflow and inline fatigue damage for very long (L/D > $10^3$) marine risers using a Finite-Analytical Navier-Stokes (FANS) technique coupled with a tensioned beam motion solver and rainflow counting fatigue module. Large Eddy Simulation (LES) method has been used to simulate the turbulence in the flow. An overset grid system is employed to mesh the riser geometry and the wake field around the riser. Risers from NDP (2003) and Miami (2006) experiments are used for simulation with uniform, linearly sheared and non-uniform (non-linearly sheared) current profiles. The simulation results including inline and crossflow motion, modal decomposition, spectral densities and fatigue damage rate are compared to the experimental data and useful conclusions are drawn.

제한된 시간적 분해법에 기반한 선스펙트럼 주파수의 효과적인 양자화 (Efficient Quantization Method for Line Spectral Frequencies Based on Restricted Temporal Decomposition)

  • 김승주;오영환
    • 한국음향학회지
    • /
    • 제17권4호
    • /
    • pp.45-53
    • /
    • 1998
  • 본 논문에서는 선스펙트럼 주파수(LSF) 파라미터를 위한 제한된 시간적 분해법을 제안한다. LSF 파라미터는 인접 차수에 대해 의존적이고, 차수간 순차성이 있으나, 기존의 시간적 분해법은 이러한 성질을 보존하지 못한다. 즉, 추정된 사건 벡터가 더 이상 LSF 파 라미터로서 해석되지 못하는 문제가 있다. 이를 해결하기 위하여, 본 논문에서는 사건 함수 간에 새로운 제약을 두어, 추정된 사건 벡터가 LSF 파라미터의 성질을 유지하도록 한다. 결 과적으로 제안된 방법을 이용하여 구해진 사건 벡터는 LSF 파라미터와 동일한 방법을 적용 하여 효과적으로 양자화될 수 있고, 실험 결과 평균 752bps의 전송률로 투명한 양자화를 수 행할 수 있었다.

  • PDF

공조기기 판넬 진동으로 인한 방사소음의 실험적 기여도 분석 (An Experimental Analysis of the Contributions to the Radiated Noise due to Panel Vibration in a Fan Unit)

  • 국형석;허승진;고강호;이재형;홍석인;김지영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.192-197
    • /
    • 2001
  • This study is concerned with the reduction of noise radiation by an industrial fan unit. Among the noise sources involved in the fan unit, this article is focused on the noise source due to vibration of panels of the unit housing. It is shown here that noise radiation associated with the panel vibration can be as significant in some frequency ranges as that associated with other noise sources such as aeroacoustic fan noise.

  • PDF

파수-주파수 분석을 이용한 자동차 옆 창문 표면 압력 섭동의 비압축성/압축성 성분 분해 (Decomposition of Surface Pressure Fluctuations on Vehicle Side Window into Incompressible/compressible Ones Using Wavenumber-frequency Analysis)

  • 이송준;정철웅
    • 한국소음진동공학회논문집
    • /
    • 제26권7호
    • /
    • pp.765-773
    • /
    • 2016
  • The vehicle interior noise caused by exterior fluid flow field is one of critical issues for product developers in a design stage. Especially, turbulence and vortex flow around A-pillar and side mirror affect vehicle interior noise through a side window. The reliable numerical prediction of the noise in a vehicle cabin due to exterior flow requires distinguishing between the aerodynamic (incompressible) and the acoustic (compressible) surface pressures as well as accurate computation of surface pressure due to this flow, since the transmission characteristics of incompressible and compressible pressure waves are quite different from each other. In this paper, effective signal processing technique is proposed to separate them. First, the exterior flow field is computed by applying computational aeroacoustics techniques based on the Lattice Boltzmann method. Then, the wavenumber-frequency analysis is performed for the time-space pressure signals in order to characterize pressure fluctuations on the surface of a vehicle side window. The wavenumber-frequency diagrams of the power spectral density shows clearly two distinct regions corresponding to the hydrodynamic and the acoustic components of the surface pressure fluctuations. Lastly, decomposition of surface pressure fluctuation into incompressible and compressible ones is successfully accomplished by taking the inverse Fourier transform on the wavenumber-frequency diagrams.

웨이블릿 분해신호를 이용한 변위응답의 추정 (Estimation of Displacement Responses Using the Wavelet Decomposition Signal)

  • 정범석;김남식;국승규
    • 콘크리트학회논문집
    • /
    • 제18권3호
    • /
    • pp.347-354
    • /
    • 2006
  • 본 논문에서는 웨이블릿 변환이론을 동적 응답변환 알고리즘에 적용하였다. 응답변환 알고리즘에서는 변환응답의 정의에 따라 변위자료를 평가할 수 있는 기법이 제시되었으며, 측정된 가속도신호의 적분에 의한 속도와 변위응답의 추정에서 속도와 변위성분의 초기조건에 대한 정보가 불필요하도록 유도되었다. 웨이블릿 변환은 순수한 스펙트럼 해석뿐만 아니라 시간영역에서의 분해신호를 추출하는데 있어 시간-주파수 공간에서의 실제 신호형상을 제공하는 장점을 갖고 있다. 웨이블릿 분해신호를 사용한 응답변환에서는 추정된 변위곡선에서 정적성분을 추출하거나 동적 변위성분의 모우드별 분리를 가능하게 한다. 제시된 응답변환 알고리즘의 타당성을 평가하기 위해 이동하중이 재하된 실 교량의 현장시험자료를 적용하였다. 교량의 동적 재하시험에서 추정응답의 신뢰도가 확보될 경우에 제시된 방법에 의한 보다 정확한 충격계수의 평가가 가능할 것으로 사료되며, 직접적인 변위의 측정이 곤란한 대형구조물에 대한 동특성의 평가에서도 유용하게 적용될 수 있을 것으로 판단된다.

Feedback control design for intelligent structures with closely-spaced eigenvalues

  • Cao, Zongjie;Lei, Zhongxiang
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.903-918
    • /
    • 2014
  • Large space structures may have resonant low eigenvalues and often these appear with closely-spaced natural frequencies. Owing to the coupling among modes with closely-spaced natural frequencies, each eigenvector corresponding to closely-spaced eigenvalues is ill-conditioned that may cause structural instability. The subspace to an invariant subspace corresponding to closely-spaced eigenvalues is well-conditioned, so a method is presented to design the feedback control law of intelligent structures with closely-spaced eigenvalues in this paper. The main steps are as follows: firstly, the system with closely-spaced eigenvalues is transformed into that with repeated eigenvalues by the spectral decomposition method; secondly, the computation for the linear combination of eigenvectors corresponding to repeated eigenvalues is obtained; thirdly, the feedback control law is designed on the basis of the system with repeated eigenvalues; fourthly, the system with closely-spaced eigenvalues is regarded as perturbed system on the basis of the system with repeated eigenvalues; finally, the feedback control law is applied to the original system, the first order perturbations of eigenvalues are discussed when the parameter modifications of the system are introduced. Numerical examples are given to demonstrate the application of the present method.

잡음 파워 스펙트럼 밀도 추정을 이용한 서로소 배열과 프로퍼게이터 기법 기반의 향상된 도래각 추정 기법 (Improved Direction of Arrival Estimation Based on Coprime Array and Propagator Method by Noise Power Spectral Density Estimation)

  • 변부근;유도식
    • 한국항행학회논문지
    • /
    • 제20권4호
    • /
    • pp.367-373
    • /
    • 2016
  • 우리는 도래각 (DoA; direction of arrival) 추정 방법 중 하나인 서로소 배열 기반의 프로퍼게이터 방법을 개선시키는 알고리즘을 제안한다. 서로소 배열 기반의 프로퍼게이터 방법은 특이값 분해없이 도래각을 추정하는 방법으로 서로소 배열 기반의 MUSIC에 비하여 현저히 낮은 복잡도를 지녔으나, 다소 저하된 도래각 추정 성능을 보인다. 우리는 이러한 성능 저하의 원인 중 하나로 잡음의 파워 스펙트럼 밀도를 포함하고 있는 신호의 자기상관행렬의 대각 성분이 사용되고 있지 않음에 있음을 파악하고, 잡음의 파워 스펙트럼 밀도가 장기간에 걸쳐 추정이 가능하다는 사실에 착안하여 신호의 자기상관행렬의 대각 성분을 사용하는 도래각 추정 방법을 제안한다. 우리는 시뮬레이션을 통해 우리가 제안한 방법이 기존의 서로소 배열 기반의 프로퍼게이터 방법보다 연산량을 4배정도 증가시키지만 탐지확률 95% 기준 하에 신호대 잡음비를 1.5dB, 도래각 분해능을 $0.7^{\circ}$ 만큼 개선시켜 그 성능이 서로소 배열 기반의 MUSIC에 보다 근접함을 관찰한다.

Full-scale measurements of wind effects and modal parameter identification of Yingxian wooden tower

  • Chen, Bo;Yang, Qingshan;Wang, Ke;Wang, Linan
    • Wind and Structures
    • /
    • 제17권6호
    • /
    • pp.609-627
    • /
    • 2013
  • The Yingxian wooden tower in China is currently the tallest wooden tower in the world. It was built in 1056 AD and is 65.86 m high. Field measurements of wind speed and wind-induced response of this tower are conducted. The wind characteristics, including the average wind speed, wind direction, turbulence intensity, gust factor, turbulence integral length scale and velocity spectrum are investigated. The power spectral density and the root-mean-square wind-induced acceleration are analyzed. The structural modal parameters of this tower are identified with two different methods, including the Empirical Mode Decomposition (EMD) combined with the Random Decrement Technique (RDT) and Hilbert transform technique, and the stochastic subspace identification (SSI) method. Results show that strong wind is coming predominantly from the West-South of the tower which is in the same direction as the inclination of the structure. The Von Karman spectrum can describe the spectrum of wind speed well. Wind-induced torsional vibration obviously occurs in this tower. The natural frequencies identified by EMD, RDT and Hilbert Transform are close to those identified by SSI method, but there is obvious difference between the identified damping ratios for the first two modes.