• Title/Summary/Keyword: Specific Energy Density

Search Result 346, Processing Time 0.026 seconds

Geothermal properties for Database (지열자료 정보 D/B 구축 요소)

  • Kim, Hyoung-Chan;Park, Jeong-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.28-31
    • /
    • 2006
  • It is require to construct geothermal database to develop geothermal energy as renewable energy policy. It must be consist of geologic data, borehole data and geophysical data for geothermal database. In aspect of geology, there are included the distribution of geology, structural geology, geological time, rock name, density of rock, porosity, thermal diffusivity, specific capacity and thermal conductivity In order to calculate the heat general ion, it is needed to analysis the radioactivity elements as U, Th and K of rock. In aspect of borehole data, there are included temperature of depth, surface temperature and geothermal gradient And also there is geotherrnornetry using chemical components of groundwater as Na Ca, K and $SiO_2$. In aspect of geophysical data, there are some thematic map as booger gravity anomaly data and magnetic survey data and etc. In addition, it is important to descript the distribution of hot spring and water temperature.

  • PDF

A First Principles Study on Nano-scale Pt Alloy Structures for Fuel Cell Catalysts (제일원리전산을 이용한 연료전지용 나노 스케일 백금 합금촉매에 대한 열역학적 구조 분석)

  • Noh, Seung-Hyo;Han, Byung-Chan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.217-221
    • /
    • 2012
  • Over the last decade, performances of low temperature fuel cells are substantially improved by developing highly active Pt-M alloy catalysts. The electrochemical stability of those catalysts, however, still does not meet the commercial grade for fuel cells to be long-term power sources of electrical vehicles. To unveil a major mechanism causing such weak durability, we extensively utilize ab-initio computations on nano-scale Pt-Co alloy catalysts and analyze thermodynamically the most stable structure as a function of compositional variation. Our results indicate that there is a certain feature governing the particle distribution of a specific alloy element on the nano-scale catalysts, which aggravates the electrochemical degradation.

  • PDF

A Model-based Methodology for Application Specific Energy Efficient Data path Design Using FPGAs (FPGA에서 에너지 효율이 높은 데이터 경로 구성을 위한 계층적 설계 방법)

  • Jang Ju-Wook;Lee Mi-Sook;Mohanty Sumit;Choi Seonil;Prasanna Viktor K.
    • The KIPS Transactions:PartA
    • /
    • v.12A no.5 s.95
    • /
    • pp.451-460
    • /
    • 2005
  • We present a methodology to design energy-efficient data paths using FPGAs. Our methodology integrates domain specific modeling, coarse-grained performance evaluation, design space exploration, and low-level simulation to understand the tradeoffs between energy, latency, and area. The domain specific modeling technique defines a high-level model by identifying various components and parameters specific to a domain that affect the system-wide energy dissipation. A domain is a family of architectures and corresponding algorithms for a given application kernel. The high-level model also consists of functions for estimating energy, latency, and area that facilitate tradeoff analysis. Design space exploration(DSE) analyzes the design space defined by the domain and selects a set of designs. Low-level simulations are used for accurate performance estimation for the designs selected by the DSE and also for final design selection We illustrate our methodology using a family of architectures and algorithms for matrix multiplication. The designs identified by our methodology demonstrate tradeoffs among energy, latency, and area. We compare our designs with a vendor specified matrix multiplication kernel to demonstrate the effectiveness of our methodology. To illustrate the effectiveness of our methodology, we used average power density(E/AT), energy/(area x latency), as themetric for comparison. For various problem sizes, designs obtained using our methodology are on average $25\%$ superior with respect to the E/AT performance metric, compared with the state-of-the-art designs by Xilinx. We also discuss the implementation of our methodology using the MILAN framework.

Organic Solvent Absorption Characteristics of Split-type Microfiber Fabrics

  • Lee Kwang Ju;Kim Seong Hun;Oh Kyung Wha
    • Fibers and Polymers
    • /
    • v.5 no.4
    • /
    • pp.280-288
    • /
    • 2004
  • Split-type nylon/polyester microfiber and polyester microfiber fabrics possess drapeability, softness, bulkiness, and smoothness, so that they can be applied in various industrial fields. In particular, these fabrics are able to absorb various organic solvents, and can be used as clean room materials. To investigate the chemical affinity between solvents and the compositional materials of these fabrics, the contact angle of thermally pressed film fabrics was measured with different solvents. The thermally pressed nylon/polyester fabric films showed a chemical attraction to formamide. The sorption properties of the microfiber fabrics were investigated using a real time testing device, and these tests showed that the sorption behavior was more influenced by the structure of the fibrous assembly than by any chemical attraction. The effect of the fabric density, specific weight, and sample structure on the sorption capacity and rate was examined for various organic solvents. The sorption capacity was influenced by the density and the specific weight of the fibrous assembly, and knitted fabric showed a higher sorption capacity than woven fabric. However, the sorption rate was less affected in lower viscosity solvents. On applying Poiseuille's Law, the lower viscosity solvents showed higher initial sorption rates, and more easily penetrated into the fibrous assembly.

Electromagnetic Property of a Heavy Fermion CePd2Si2 (헤비 페르미온 CePd2Si2의 전자기적 특성)

  • Jeong, Tae Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.399-402
    • /
    • 2019
  • The electromagnetic properties of heavy fermion $CePd_2Si_2$ are investigated using density functional theory using the local density approximation (LDA) and LDA+U methods. The Ce f-bands are located near the Fermi energy and hybridized with the Pd-3d states. This hybridization plays an important role in generating the physical characteristics of this compound. The magnetic moment of $CePd_2Si_2$ calculated within the LDA scheme does not match with the experimental result because of the strong correlation interaction between the f orbitals. The calculation shows that the specific heat coefficient underestimates the experimental value by a factor of 5.98. This discrepancy is attributed to the formation of quasiparticles. The exchange interaction between the local f electrons and the conduction d electrons is the reason for the formation of quasiparticles. The exchange interaction is significant in $CePd_2Si_2$, which makes the quasiparticle mass increase. This enhances the specific heat coefficient.

Preparation of Bipolar Plate for Fuel Cell Using CNT/Graphite Nano-Composite

  • Choi, Jong-Min;Kim, Tae-Jin;Hyun, Min-Soo;Peck, Dong-Hyun;Kim, Sang-Kyung;Lee, Byung-Rok;Park, Jong-Soo;Jung, Doo-Hwan
    • Carbon letters
    • /
    • v.6 no.3
    • /
    • pp.181-187
    • /
    • 2005
  • Bipolar plates require some specific properties such as electrical conductivity, mechanical strength, chemical stability, and low permeability for the fuel cell application. This study investigated the effects of carbon nanotube (CNT) contents and process conditions of hot press molding on the electrical and physical properties using CNT 3~7 wt% added graphite nano-composites in the curing temperatures range of 140~$200^{\circ}C$ and pressure of 200~300 kg/$cm^2$. Bulk density, hardness and flexural strength increased with increasing CNT contents, curing pressure and temperature. With the 7 wt% CNT added noncomposite, the electrical resistance improved by 30% and the flexural strength increased by 25% as compared to that without CNT at the temperature of $160^{\circ}C$ and pressure of 300 kg/$cm^2$. These properties were close to the DOE reference criteria as bulk resistance of 13 $m{\Omega}cm$ and tensile strength of 515 kg/$cm^2$.

  • PDF

The Effect of a Bypass Flow Penetrating through a Gas Diffusion Layer on Performance of a PEM Fuel Cell (가스확산층을 통과하는 반응가스 우회유동이 고분자 연로전지의 성능에 미치는 영향)

  • Cho, Choong-Won;Ahn, Eun-Jin;Lee, Seung-Bo;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.147-151
    • /
    • 2007
  • A serpentine channel geometry often used in a polymer electrolyte membrane fuel cell has a strong pressure gradient between adjacent channels in specific regions. The pressure gradient helps some amount of reactant gas penetrate through a gas diffusion layer(GDL). As a result, the overall serpentine flow structure is slightly different from intention of a designer. The purpose of this paper is to examine the effect of serpentine flow structure on current density distribution. By using a commercial code, STAR-CD, a numerical simulation is performed to analyze the fuel cell with relatively high aspect ratio active area. To increase the accuracy of the numerical simulation, GDL permeabilities are measured with various compression conditions. Three-dimensional flow field and current density distribution are calculated. For the verification of the numerical simulation results, water condensation process in the cathode channel is observed through a transparent bipolar plate. The result of this study shows that the region of relatively low current density corresponds to that of dropwise condensation in cathode channels.

  • PDF

MWCNT thin film based supercapictor using spray deposition and gel electrolytes

  • Han, Song-Yi;Park, Sung-Hwak;Kim, Sung-Hyun;Kim, Sun-Min;Han, Joung-Hoon;Bae, Joon-Ho;Lee, Churl-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.465-465
    • /
    • 2011
  • In recent years, electrochemical supercapacitors have attracted much attention due to their high power density, long life cycles, and high efficiency. Some supercapacitors using CNTs have been reported, but there are several issues to be resolved for further development of CNT based supercapacitors. One issue is time consuming procedures to prepare CNT films, which may provide poor control of CNT uniformity over the large area of the substrates. Another is new electrolytes replacing the conventional liquid electrolytes in supercapacitors. In this work, We have successfully demonstrated that spray deposition method of multiwalled CNT films using gel electroytes could be promising for CNT-based supercapacitors on ITO substrates. Specific capacitances using gel electrolyte reached up to 1.5 F/g and 9 mF/$cm^2$, and internal resistance was 28 ${\Omega}$. Specific capacitances and internal resistance of supercapacitors with gel electrolyte were better than or comparable to those with liquid electrolytes($KNO_3$, $Na_2SO_4$), indicating that gel electrolytes could replace liquid counterparts in CNT-based supercapacitors. Combined with gel electrolyte, spray deposition method could provide low cost and easily scalable process for high performance supercapacitors using CNT films on ITO for applications in display devices.

  • PDF

Improved Mesoporous Structure of High Surface Area Carbon Nanofiber for Electrical Double-Layer Capacitors

  • Lee, Young-Geun.;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.192-198
    • /
    • 2017
  • Carbon nanofiber (CNF) is used as an electrode material for electrical double layer capacitors (EDLCs), and is being consistently researched to improve its electrochemical performance. However, CNF still faces important challenges due to the low mesopore volume, leading to a poor high-rate performance. In the present study, we prepared the unique architecture of the activated mesoporous CNF with a high specific surface area and high mesopore volume, which were successfully synthesized using PMMA as a pore-forming agent and the KOH activation. The activated mesoporous CNF was found to exhibit the high specific surface area of $703m^2g^{-1}$, total pore volume of $0.51cm^3g^{-1}$, average pore diameter of 2.9 nm, and high mesopore volume of 35.2 %. The activated mesoporous CNF also indicated the high specific capacitance of $143F\;g^{-1}$, high-rate performance, high energy density of $17.9-13.0W\;h\;kg^{-1}$, and excellent cycling stability. Therefore, this unique architecture with a high specific surface area and high mesopore volume provides profitable synergistic effects in terms of the increased electrical double-layer area and favorable ion diffusion at a high current density. Consequently, the activated mesoporous CNF is a promising candidate as an electrode material for high-performance EDLCs.

The Magnetic and Thermal Properties of a Heavy Fermion CeNi2Ge2 (헤비페르미온계 CeNi2Ge2의 자기 및 열적 특성)

  • Jeong, Tae Seong
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.451-455
    • /
    • 2019
  • The electromagnetic and thermal properties of a heavy fermion $CeNi_2Ge_2$ are investigated using first-principle methods with local density approximation (LDA) and fully relativistic approaches. The Ce f-bands are located near the Fermi energy $E_F$ and hybridized with the Ni-3d states. This hybridization plays important roles in the characteristics of this material. The fully relativistic approach shows that the 4f states split into $4f_{7/2}$ and $4f_{5/2}$ states due to spin-orbit coupling effects. It can be found that within the LDA calculation, the density of states near the Fermi level are mainly of Ce-derived 4f states. The Ni-derived 3d states have high peaks around -1.7eV and spreaded over wide range around the Fermi level. The calculated magnetic of $CeNi_2Ge_2$ with LDA method does not match with that of experimental result because of strong correlation interaction between electrons in f orbitals. The calculations show that the specific heat coefficient underestimates the experimental value by a factor of 19.1. The discrepancy between the band calculation and experiment for specific heat coefficient is attributed to the formation of a quasiparticle. Because of the volume contraction, the exchange interaction between the f states and the conduction electrons is large in $CeNi_2Ge_2$, which increases the quasiparticle mass. This will result in the enhancement of the specific hear coefficient.