• Title/Summary/Keyword: Spatial variables

Search Result 861, Processing Time 0.034 seconds

Geographically weighted kernel logistic regression for small area proportion estimation

  • Shim, Jooyong;Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.531-538
    • /
    • 2016
  • In this paper we deal with the small area estimation for the case that the response variables take binary values. The mixed effects models have been extensively studied for the small area estimation, which treats the spatial effects as random effects. However, when the spatial information of each area is given specifically as coordinates it is popular to use the geographically weighted logistic regression to incorporate the spatial information by assuming that the regression parameters vary spatially across areas. In this paper, relaxing the linearity assumption and propose a geographically weighted kernel logistic regression for estimating small area proportions by using basic principle of kernel machine. Numerical studies have been carried out to compare the performance of proposed method with other methods in estimating small area proportion.

Power Comparison of Independence Test for the Farlie-Gumbel-Morgenstern Family

  • Amini, M.;Jabbari, H.;Mohtashami Borzadaran, G.R.;Azadbakhsh, M.
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.4
    • /
    • pp.493-505
    • /
    • 2010
  • Developing a test for independence of random variables X and Y against the alternative has an important role in statistical inference. Kochar and Gupta (1987) proposed a class of tests in view of Block and Basu (1974) model and compared the powers for sample sizes n = 8, 12. In this paper, we evaluate Kochar and Gupta (1987) class of tests for testing independence against quadrant dependence in absolutely continuous bivariate Farlie-Gambel-Morgenstern distribution, via a simulation study for sample sizes n = 6, 8, 10, 12, 16 and 20. Furthermore, we compare the power of the tests with that proposed by G$\ddot{u}$uven and Kotz (2008) based on the asymptotic distribution of the test statistics.

Applications of Open-source NoSQL Database Systems for Astronomical Spatial and Temporal Data

  • Shin, Min-Su
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.88.3-89
    • /
    • 2017
  • We present our experiences with open-source NoSQL database systems in analyzing spatial and temporal astronomical data. We conduct experiments of using Redis in-memory NoSQL database system by modifying and exploiting its support of geohash for astronmical spatial data. Our experiment focuses on performance, cost, difficulty, and scalability of the database system. We also test OpenTSDB as a possible NoSQL database system to process astronomical time-series data. Our experiments include ingesting, indexing, and querying millions or billions of astronomical time-series measurements. We choose our KMTNet data and the public VVV (VISTA Variables in the Via Lactea) catalogs as test data. We discuss issues in using these NoSQL database systems in astronomy.

  • PDF

Optimum Design of the Spatial Structures using the TABU Algorithm (TABU 알고리즘을 이용한 대공간 구조물의 최적설계)

  • Cho, Yong-Won;Lee, Sang-Ju;Han, Sang-Eul
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.246-253
    • /
    • 2005
  • The design of structural engineering optimization is to minimize the cost. This problem has many objective functions formulating section and shape as a function of the included discrete variables. simulated annealing, genetic algerian and TABU algorithm are searching methods for optimum values. The object of this reserch is comparing the result of TABU algorithm, and verifying the efficiency of TABU algorithm in structural optimization design field. For the purpose, this study used a solid truss of 25 elements having 10 nodes, and size optimization for each constraint and load condition of Geodesic one, and shape optimization of Cable Dome for verifying spatial structures by the application of TABU algorithm

  • PDF

Performance Analysis of LR-aided ZF Receiver for MIMO Systems

  • Kim, Sangchoon
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.37-43
    • /
    • 2018
  • Lattice-reduction (LR) techniques have been developed for signal detection in spatial multiplexing multiple input multiple output (MIMO) systems to obtain the largest diversity gain. Thus, an LR-assisted zero-forcing (ZF) receiver can achieve the maximum diversity gain in spatial multiplexing MIMO systems. In this paper, a simplified analysis of the achievable diversity gain is presented by fitting the channel coefficients lattice-reduced by a complex Lenstra-Lenstra-$Lov{\acute{a}}z$ (LLL) algorithm into approximated Gaussian random variables. It will be shown that the maximum diversity gain corresponding to two times the number of receive antennas can be achieved by the LR-based ZF detector. In addition, the approximated bit error rate (BER) expression is also derived. Finally, the analytical BER performance is comparatively studied with the simulated results.

Design of Directional Structural-Acoustic Coupled Radiator in Wave Number Domain (파수 영역에서 지향성 구조-음향 연성 방사체 설계)

  • Seo, Hee-Seon;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.240-243
    • /
    • 2005
  • A design procedure using spatial Fourier transform is presented for a structural-acoustic coupled radiator that can emit sound in the desired direction with high power and low side lobe level. The design procedure consists of three steps. Firstly, the structural-acoustic coupled radiator is chosen to obtain strong coupling between structural vibration and acoustic pressure. The radiator is composed by two spaces which are separated by a wall. Spaces can be categorized as reverberant finite space and unbounded semi-infinite space, and the wall are composed of two plates and an opening. The velocities on the wall are predicted. Secondly, directivity and energy distribution of radiator are predicted in wave number domain using spatial Fourier transform. Finally, optimal design variables are calculated using a dual optimal algorithm. Its computational example is presented including the directivity and resulting pressure distribution using proposed procedure.

  • PDF

Crime hotspot prediction based on dynamic spatial analysis

  • Hajela, Gaurav;Chawla, Meenu;Rasool, Akhtar
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1058-1080
    • /
    • 2021
  • Crime is not a completely random event but rather shows a pattern in space and time. Capturing the dynamic nature of crime patterns is a challenging task. Crime prediction models that rely only on neighborhood influence and demographic features might not be able to capture the dynamics of crime patterns, as demographic data collection does not occur frequently and is static. This work proposes a novel approach for crime count and hotspot prediction to capture the dynamic nature of crime patterns using taxi data along with historical crime and demographic data. The proposed approach predicts crime events in spatial units and classifies each of them into a hotspot category based on the number of crime events. Four models are proposed, which consider different covariates to select a set of independent variables. The experimental results show that the proposed combined subset model (CSM), in which static and dynamic aspects of crime are combined by employing the taxi dataset, is more accurate than the other models presented in this study.

Assessment of Improving SWAT Weather Input Data using Basic Spatial Interpolation Method

  • Felix, Micah Lourdes;Choi, Mikyoung;Zhang, Ning;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.368-368
    • /
    • 2022
  • The Soil and Water Assessment Tool (SWAT) has been widely used to simulate the long-term hydrological conditions of a catchment. Two output variables, outflow and sediment yield have been widely investigated in the field of water resources management, especially in determining the conditions of ungauged subbasins. The presence of missing data in weather input data can cause poor representation of the climate conditions in a catchment especially for large or mountainous catchments. Therefore, in this study, a custom module was developed and evaluated to determine the efficiency of utilizing basic spatial interpolation methods in the estimation of weather input data. The module has been written in Python language and can be considered as a pre-processing module prior to using the SWAT model. The results of this study suggests that the utilization of the proposed pre-processing module can improve the simulation results for both outflow and sediment yield in a catchment, even in the presence of missing data.

  • PDF

A stratified random sampling design for paddy fields: Optimized stratification and sample allocation for effective spatial modeling and mapping of the impact of climate changes on agricultural system in Korea (농지 공간격자 자료의 층화랜덤샘플링: 농업시스템 기후변화 영향 공간모델링을 위한 국내 농지 최적 층화 및 샘플 수 최적화 연구)

  • Minyoung Lee;Yongeun Kim;Jinsol Hong;Kijong Cho
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.526-535
    • /
    • 2021
  • Spatial sampling design plays an important role in GIS-based modeling studies because it increases modeling efficiency while reducing the cost of sampling. In the field of agricultural systems, research demand for high-resolution spatial databased modeling to predict and evaluate climate change impacts is growing rapidly. Accordingly, the need and importance of spatial sampling design are increasing. The purpose of this study was to design spatial sampling of paddy fields (11,386 grids with 1 km spatial resolution) in Korea for use in agricultural spatial modeling. A stratified random sampling design was developed and applied in 2030s, 2050s, and 2080s under two RCP scenarios of 4.5 and 8.5. Twenty-five weather and four soil characteristics were used as stratification variables. Stratification and sample allocation were optimized to ensure minimum sample size under given precision constraints for 16 target variables such as crop yield, greenhouse gas emission, and pest distribution. Precision and accuracy of the sampling were evaluated through sampling simulations based on coefficient of variation (CV) and relative bias, respectively. As a result, the paddy field could be optimized in the range of 5 to 21 strata and 46 to 69 samples. Evaluation results showed that target variables were within precision constraints (CV<0.05 except for crop yield) with low bias values (below 3%). These results can contribute to reducing sampling cost and computation time while having high predictive power. It is expected to be widely used as a representative sample grid in various agriculture spatial modeling studies.

Expansion of Private Tutoring Market for Adults according to Labor Market Changes and the Geographical Characteristics (노동시장의 구조 변화에 따른 성인 대상 사교육 시장의 성장과 공간적 함의)

  • Park, Sohyun;Lee, Keumsook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.402-419
    • /
    • 2014
  • This study attempts to investigate the spatial characteristics of private tutoring markets for adults which have been expanded rapidly with labor market changes in Korea. In particular, For the purpose, we examine thoroughly various indies of labor markets and private tutoring markets for adults in Korea in first and then analyze the spatial characteristics. We classify private tutoring institutes for adults into two categories by job-statuses and education levels, and analyze the spatial distribution patterns of the attendants of the classes. In order to understand the spatial characteristic of their distributions, we distinguish whether there exist the spatial autocorrelation or not by applying Moran's I values for each categories in first. We also examine the spatial cluster patterns by Hot spots analysis utilizing $G^*$ statistics. Multiple linear regression models are developed for each category to explain the relationships between the spatial distributions of private tutoring institutes and geographical variables.

  • PDF