References
- S. Shukla et al., A multivariate regression model for identifying, analyzing and predicting crimes, Wirel. Pers. Commun. 113 (2020), 2447-2461. https://doi.org/10.1007/s11277-020-07335-w
- J. Wang et al., Crime risk analysis through big data algorithm with urban metrics, Phys. A 545 (2020), 123627. https://doi.org/10.1016/j.physa.2019.123627
- R. Boivin, On the use of crime rates, Can. J. Criminol.Crim. Justice 55 (2013), no. 2, 263-277. https://doi.org/10.3138/cjccj.2012-E-06
- C. Graif, A. S. Gladfelter, and S. A. Matthews, Urban poverty and neighborhood effects on crime: Incorporating spatial and network perspectives, Sociol. Compass. 8 (2014), no. 9, 1140-1155. https://doi.org/10.1111/soc4.12199
- M. A. Andresen, The ambient population and crime analysis, Prof. Geogr. 63 (2011), no. 2, 193-212. https://doi.org/10.1080/00330124.2010.547151
- C. Vandeviver and W. Bernasco, The geography of crime and crime control, Appl. Geogr. 86 (2017), no. 1-12, 220-225. https://doi.org/10.1016/j.apgeog.2017.08.012
- W. Luan et al., Partition-based collaborative tensor factorization for POI recommendation, IEEE/CAA J. Autom. Sin. 4 (2017), no. 3, 437-446. https://doi.org/10.1109/JAS.2017.7510538
- L. Li, S. Wang, and F. Wang, An analysis of taxi driver's route choice behavior using the trace records, IEEE Trans. Comput. Soc. Syst. 5 (2018), no. 2, 576-582. https://doi.org/10.1109/tcss.2018.2831285
- M. S. Gerber, Predicting crime using twitter and kernel density estimation, Decis. Support. Syst. 61 (2014), 115-125. https://doi.org/10.1016/j.dss.2014.02.003
- L. Vomfell, W. K. Hardle, and S. Lessmann, Improving crime count forecasts using twitter and taxi data, Decis. Support. Syst. 113 (2018), 73-85. https://doi.org/10.1016/j.dss.2018.07.003
- X. Wang, D. E. Brown, and M. S. Gerber, Spatio-temporal modeling of criminal incidents using geographic, demographic, and Twitter-derived information, in Proc. IEEE Int. Conf. Intell. Secur. Inform. (Washington, DC, USA), June 2012, pp. 36-41.
- M. Al Boni and M. S. Gerber, Predicting crime with routine activity patterns inferred from social media, in Proc. IEEE Int. Conf. Syst. Man, and Cybern. (Budapest, Hungary), Oct. 2016, pp. 1233-1238.
- X. Hu et al., Impact of climate variability and change on crime rates in Tangshan, China, Sci. The Total Environ. 609 (2017), 1041-1048. https://doi.org/10.1016/j.scitotenv.2017.07.163
- D. J. Lemon and R. Partridge, Is weather related to the number of assaults seen at emergency departments?, Injury 48 (2017), no. 11, 2438-2442. https://doi.org/10.1016/j.injury.2017.08.038
- Y. Xu et al., The impact of street lights on spatial-temporal patterns of crime in Detroit, Michigan, Cities 79 (2018), 45-52. https://doi.org/10.1016/j.cities.2018.02.021
- T. Lawson, R. Rogerson, and M. Barnacle, A comparison between the cost effectiveness of CCTV and improved street lighting as a means of crime reduction, Comput. Environ. Urban Syst. 68 (2018), 17-25. https://doi.org/10.1016/j.compenvurbsys.2017.09.008
- H. Wang et al., Crime rate inference with big data, in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. San Francisco, CA, USA), Aug. 2016, pp. 635-644.
- X. Zhao and J. Tang, Modeling temporal-spatial correlations for crime prediction, in Proc. ACM Conf. Inf. Knowl. Manage. (Singapore, Singapore), Nov. 2017, pp. 497-506.
- C. Kadar and I. Pletikosa, Mining large-scale human mobility data for long-term crime prediction, EPJ Data Sci. 7 (2018), no. 26, 1-27. https://doi.org/10.1140/epjds/s13688-017-0128-2
- L. G. A. Alves, H. V. Ribeiro, and F. A. Rodrigues, Crime prediction through urban metrics and statistical learning, Phys. A 505 (2018), 435-443. https://doi.org/10.1016/j.physa.2018.03.084
- C. H. Yu et al., Crime forecasting using data mining techniques, in Proc. IEEE. Int. Conf. Data Min. Workshops (Vancouver, Canada), Dec. 2011, pp. 779-786.
- G. O. Mohler et al., Self-exciting point process modeling of crime, J. Am. Stat. Assoc. 106 (2011), no. 493, 100-108. https://doi.org/10.1198/jasa.2011.ap09546
- T. Ohyama and M. Amemiya, Applying crime prediction techniques to Japan: A comparison between risk terrain modeling and other methods, Eur. J. Crim. Policy Res. 24 (2018), 469-487. https://doi.org/10.1007/s10610-018-9378-1
- M. Felson and R. Boivin, Daily crime flows within a city, Crime Sci. 31 (2015), 1-10.
- C. Kadar, R. R. Brungger, and I. Pletikosa, Measuring ambient population from location-based social networks to describe urban crime, in Social Informatics, vol. 10539, Springer, Cham, Netherlands, 2017, pp. 521-535.
- A. Newton and M. Felson, Editorial: Crime patterns in time and space: The dynamics of crime opportunities in urban areas, Crime Sci. 4 (2015), 1-5. https://doi.org/10.1186/s40163-014-0011-4
- M. A. Andresen and N. Malleson, Intra-week spatial-temporal patterns of crime, Crime Sci. 4 (2015), 1-11. https://doi.org/10.1186/s40163-014-0011-4
- S. Shiode et al., Space-time characteristics of micro-scale crime occurrences: An application of a network-based space-time search window technique for crime incidents in chicago, Int. J. Geogr. Inf. Sci. 29 (2015), no. 5, 697-719. https://doi.org/10.1080/13658816.2014.968782
- C. R. Herrmann, The dynamics of robbery and violence hot spots, Crime Sci. 4 (2015), 1-14. https://doi.org/10.1186/s40163-014-0011-4
- Q. Zhu et al., An anticrime information support system design: Application of K-means-VMD-BiGRU in the city of Chicago, Inf. Manag. (2019), 103247.
- T. M. Alarcon Falconi et al., Effects of data aggregation on time series analysis of seasonal infections, Int. J. Environ. Res. Public Health 17 (2020), 5887. https://doi.org/10.3390/ijerph17165887
- D. Yang et al., Crimetelescope: Crime hotspot prediction based on urban and social media data fusion, World Wide Web 21 (2018), 1323-1347. https://doi.org/10.1007/s11280-017-0515-4