• 제목/요약/키워드: Spatial quadrature

검색결과 48건 처리시간 0.024초

An hp-angular adaptivity with the discrete ordinates method for Boltzmann transport equation

  • Ni Dai;Bin Zhang;Xinyu Wang;Daogang Lu;Yixue Chen
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.769-779
    • /
    • 2023
  • This paper describes an hp-angular adaptivity algorithm in the discrete ordinates method for Boltzmann transport applications with strong angular effects. This adaptivity uses discontinuous finite element quadrature sets with different degrees, which updates both angular mesh and the degree of the underlying discontinuous finite element basis functions, allowing different angular local refinement to be applied in space. The regular and goal-based error metrics are considered in this algorithm to locate some regions to be refined. A mapping algorithm derived by moment conservation is developed to pass the angular solution between spatial regions with different quadrature sets. The proposed method is applied to some test problems that demonstrate the ability of this hp-angular adaptivity to resolve complex fluxes with relatively few angular unknowns. Results illustrate that a reduction to approximately 1/50 in quadrature ordinates for a given accuracy compared with uniform angular discretization. This method therefore offers a highly efficient angular adaptivity for investigating difficult particle transport problems.

2차원 전기비저항 모델링에서 후리에역변환의 수치구적법 (Numerical Quadrature Techniques for Inverse Fourier Transform in Two-Dimensional Resistivity Modeling)

  • 김희준
    • 자원환경지질
    • /
    • 제25권1호
    • /
    • pp.73-77
    • /
    • 1992
  • 본 논문에서는 2차원 전기비저항 모델링에서 후리에역변환을 계산하는 수치구적법을 비교하였다. 지수함수 및 큐빅스프라인 보간을 사용한 구적법을 균질대지 모델에 대하여 검토하였다. 이들 기술적용시, ${\lambda}_{min}$을 최소의 샘플링파수라고 할 때 0에서 ${\lambda}_{min}$까지 간격에 대한 적분은 후리에변환된 포텐샬을 대수 함수로 근사함으로써 계산하였다. 이러한 방법은 ${\lambda}=0$에서의 대수적인 불연속성에 기인한 후리에역변환의 오차를 크게 줄일 수 있다. 수치계산 결과, 샘플링간격이 적당하다면 큐빅스프라인 보간법이 지수함수 보간법보다 더 정확함을 알았다.

  • PDF

Bending, buckling and vibration analyses of nonhomogeneous nanotubes using GDQ and nonlocal elasticity theory

  • Pradhan, S.C.;Phadikar, J.K.
    • Structural Engineering and Mechanics
    • /
    • 제33권2호
    • /
    • pp.193-213
    • /
    • 2009
  • In this paper structural analysis of nonhomogeneous nanotubes has been carried out using nonlocal elasticity theory. Governing differential equations of nonhomogeneous nanotubes are derived. Nanotubes include both single wall nanotube (SWNT) and double wall nanotube (DWNT). Nonlocal theory of elasticity has been employed to include the scale effect of the nanotubes. Nonlocal parameter, elastic modulus, density and diameter of the cross section are assumed to be functions of spatial coordinates. General Differential Quadrature (GDQ) method has been employed to solve the governing differential equations of the nanotubes. Various boundary conditions have been applied to the nanotubes. Present results considering nonlocal theory are in good agreement with the results available in the literature. Effect of variation of various geometrical and material parameters on the structural response of the nonhomogeneous nanotubes has been investigated. Present results of the nonhomogeneous nanotubes are useful in the design of the nanotubes.

Three-dimensional free vibration analysis of cylindrical shells with continuous grading reinforcement

  • Yas, M.H.;Garmsiri, K.
    • Steel and Composite Structures
    • /
    • 제10권4호
    • /
    • pp.349-360
    • /
    • 2010
  • Three dimensional free vibrations analysis of functionally graded fiber reinforced cylindrical shell is presented, using differential quadrature method (DQM). The cylindrical shell is assumed to have continuous grading of fiber volume fraction in the radial direction. Suitable displacement functions are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by differential quadrature method to obtain natural frequencies. The main contribution of this work is presenting useful results for continuous grading of fiber reinforcement in the thickness direction of a cylindrical shell and comparison with similar discrete laminate composite ones. Results indicate that significant improvement is found in natural frequency of a functionally graded fiber reinforced cylinder due to the reduction in spatial mismatch of material properties and natural frequency.

초음파 도플러 시스템에서 2차 샘플링을 이용한 공간축상의 평균 방법 (A Spatial Average Method Using 2nd Order Sampling in Ultrasonic Doppler System)

  • 백광렬
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권3호
    • /
    • pp.279-288
    • /
    • 1995
  • Ultrasonic Doppler systems for the purpose of estimating blood flow velocity, blood flow volume, and flow imaging are commonly used due to advantages of non-invasive and real time observation. Specially, the technical developments of color flow mapping (2-D Doppler) systems have made a relatively rapid progress. However, the 2-D Doppler systems have several problems, such as the range ambiguity, low signal to noise ratio, and slow frame rate. The slow frame rate problem is resolved by using the spatial average which is a method to acquire more data samples for mean frequency estimation. In this paper, spatial average method using the 2nd order sampling instead of quadrature sampling is proposed. The experimental results show that the proposed methods have good performance and easy application to the color flow mapping system.

  • PDF

일반화한 쿼터너리 준직교 시퀀스 공간변조 기법 (Generalized Quaternary Quasi-Orthogonal Sequences Spatial Modulation)

  • 샹위롱;김호준;정태진
    • 한국통신학회논문지
    • /
    • 제41권4호
    • /
    • pp.404-414
    • /
    • 2016
  • So called quaternary quasi-orthogonal sequence spatial modulation (Q-QOS-SM) has been presented with an advantage of improved throughputs compared to the conventional SM and generalized spatial modulation (GSM) by virtue of a larger set size of QOSs and its minimized correlation value between these QOSs. However the Q-QOS-SM has been originally invented for limited transmit antennas of only powers of two. In this paper, by extending the Q-QOS-SM to any number of transmit antennas, we propose a generalized Q-QOS-SM, referred as G-QO-SM. Unlike the conventional Q-QOS-SM using the Q-QOSs of length of any power of two, the proposed G-QO-SM is constructed based on the Q-QOSs of only the lengths of 2 and 4. The proposed scheme guarantees the transmission of the total $N_t$ spatial bits with $N_t$ transmit antennas, and thus achieves greatly higher throughputs than the other existing schemes including the SM, GSM, Q-QOS-SM, Quadrature-SM, and Enhanced-SM. The performance improvements of the proposed G-QO-SM is justified by comparing the analytically derived BER upper bounds and also the exact Monte Carlo simulation results.

공간주파수응답의 기저대역 확장에 의한 초음파영상의 개선 (The Enhancement of the Acoustic Image by Combining Bases of Support for SFR (Spatial Frequency Response))

  • 송대건;오동인;김현;전계석
    • 한국음향학회지
    • /
    • 제22권5호
    • /
    • pp.408-417
    • /
    • 2003
  • 항공전자산업이나 반도체 산업분야에서 제품에 대한 품질관리와 안정성 확보 및 생산공정의 경비절감이라는 차원에서 초음파현미경이 사용되고 있다. 기존의 초음파현미경은 음향렌즈의 단일 특성주파수에서만 영상을 획득함으로써 깊이방향의 영상분해능이 결정되어졌다. 본 연구에서는 음향렌즈의 대역폭 내에서 동작주파수를 변화시키면서 K/sub z/방향성분의 지연을 일으켜 K/sub z/ 방향의 대역폭을 증가시키므로 깊이 분해능이 향상됨을 보였다. 실험에서는 내부의 홀을 갖는 시료와 깊은 홈을 갖는 시료에 대해 다중주파수 (4.4 ㎒∼5.6㎒)를 적용한 결과, 영상강도의 변화가 단일 주파수인 경우 10%이내로 변화하였으나 다중주파수의 경우 50%로 나타났다 한편 결함의 깊이가 다른 고체 내부의 결함에 대한초음파 영상의 복원시, 진폭의 경우에는 단일 주파수를 사용한 경우 결함의 형태는 나타났으나 깊이 정보는 알 수 없었고 다중 주파수를 사용한 경우 깊이에 따라 다른 영상 강도를 나타내며 출력되었다. 따라서 초음파 현미경에서 다중주파수를 사용할 경우, 깊이방향으로 더 좋은 영상분해능을 얻을 수 있음을 알 수 있다.

Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads

  • Hamed, Mostafa A.;Mohamed, Salwa A;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.75-89
    • /
    • 2020
  • The current paper illustrates the effect of in-plane varying compressive force on critical buckling loads and buckling modes of sandwich composite laminated beam rested on elastic foundation. To generalize a proposed model, unified higher order shear deformation beam theories are exploited through analysis; those satisfy the parabolic variation of shear across the thickness. Therefore, there is no need for shear correction factor. Winkler and Pasternak elastic foundations are presented to consider the effect of any elastic medium surrounding beam structure. The Hamilton's principle is proposed to derive the equilibrium equations of unified sandwich composite laminated beams. Differential quadrature numerical method (DQNM) is used to discretize the differential equilibrium equations in spatial direction. After that, eigenvalue problem is solved to obtain the buckling loads and associated mode shapes. The proposed model is validated with previous published works and good matching is observed. The numerical results are carried out to show effects of axial load functions, lamination thicknesses, orthotropy and elastic foundation constants on the buckling loads and mode shapes of sandwich composite beam. This model is important in designing of aircrafts and ships when non-uniform compressive load and shear loading is dominated.

The G. D. Q. method for the harmonic dynamic analysis of rotational shell structural elements

  • Viola, Erasmo;Artioli, Edoardo
    • Structural Engineering and Mechanics
    • /
    • 제17권6호
    • /
    • pp.789-817
    • /
    • 2004
  • This paper deals with the modal analysis of rotational shell structures by means of the numerical solution technique known as the Generalized Differential Quadrature (G. D. Q.) method. The treatment is conducted within the Reissner first order shear deformation theory (F. S. D. T.) for linearly elastic isotropic shells. Starting from a non-linear formulation, the compatibility equations via Principle of Virtual Works are obtained, for the general shell structure, given the internal equilibrium equations in terms of stress resultants and couples. These equations are subsequently linearized and specialized for the rotational geometry, expanding all problem variables in a partial Fourier series, with respect to the longitudinal coordinate. The procedure leads to the fundamental system of dynamic equilibrium equations in terms of the reference surface kinematic harmonic components. Finally, a one-dimensional problem, by means of a set of five ordinary differential equations, in which the only spatial coordinate appearing is the one along meridians, is obtained. This can be conveniently solved using an appropriate G. D. Q. method in meridional direction, yielding accurate results with an extremely low computational cost and not using the so-called "delta-point" technique.

Vibration of bio-inspired laminated composite beams under varying axial loads

  • Tharwat Osman;Salwa A. Mohamed;Mohamed A. Eltaher;Mashhour A. Alazwari;Nazira Mohamed
    • Steel and Composite Structures
    • /
    • 제50권1호
    • /
    • pp.25-43
    • /
    • 2024
  • In this article, a mathematical model is developed to predict the dynamic behavior of bio-inspired composite beam with helicoidal orientation scheme under variable axial load using a unified higher order shear deformation beam theory. The geometrical kinematic relations of displacements are portrayed with higher parabolic shear deformation beam theory. Constitutive equation of composite beam is proposed based on plane stress problem. The variable axial load is distributed through the axial direction by constant, linear, and parabolic functions. The equations of motion and associated boundary conditions are derived in detail by Hamilton's principle. Using the differential quadrature method (DQM), the governing equations, which are integro-differential equations are discretized in spatial direction, then they are transformed into linear eigenvalue problems. The proposed model is verified with previous works available in literatures. Parametric analyses are developed to present the influence of axial load type, orthotropic ratio, slenderness ratio, lamination scheme, and boundary conditions on the natural frequencies of composite beam structures. The present enhanced model can be used especially in designing spacecrafts, naval, automotive, helicopter, the wind turbine, musical instruments, and civil structures subjected to the variable axial loads.