• Title/Summary/Keyword: Spatial images

Search Result 2,489, Processing Time 0.042 seconds

An Automatic Approach for Geometric Correction of Landsat Images

  • Hwang, Tae-Hyun;Chae, Gee-Ju;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.542-542
    • /
    • 2002
  • Geometric correction is a critical step to remove geometric distortions in satellite images. For correct geometric correction, Ground Control Points (GCPs) have to be chosen carefully to guarantee the quality of corrected satellite images. In this paper, we present an automatic approach for geometric correction by constructing GCP Chip database (GCP DB) that is a collection of pieces of images with geometric information. The GCP DB is constructed by exploiting Landsat's nadir-viewing property and the constructed GCP DB is combined with a simple block matching algorithm for efficient GCP matching. This approach reduces time and energy for tedious manual geometric correction and promotes usage of Landsat images.

  • PDF

The Land Surface Temperature Analysis of Seoul city using Satellite Image (위성영상을 통한 서울시 지표온도 분석)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.19-26
    • /
    • 2013
  • The propose of this study is to analyze the optimum spatial resolution of the urban spatial thermal environment structure and to evaluate of the possibility detection using aerial photographs and thermal satellite images. The proper techniques of the optimum spatial resolution for the urban spatial thermal environment structure were analyzed. Thermal infrared satellite image of Seoul city were used for the change rate of surface temperature variation and suggested to the spatial extent and effects of urban surface characteristics and spatial data was interpreted as regions. To extract the surface temperature, Landsat thermal infrared satellite image compared with an automatic weather station data and in the field of the measured temperature and surface temperature by thermal environment affects, the spatial domain has been verified. The surface temperature of the satellite images to extract after adjusting surface temperature isotherms were constructed. The changes in surface temperature from 2008 to 2012 the average surface temperature observation images of changing areas were divided into space. The results of this study are as follows: Through analysis of satellite imagery, Seoul city surface temperature change due to extraction comfort indices were classified into four grades. The comfort index indicative of the temperature of Gangnam-gu, $23.7{\sim}27.2(^{\circ}C)$ range and Songpagu, a $22.7{\sim}30.6(^{\circ}C)$ respectively, the surface temperature of Yeouido $25.8{\sim}32.6(^{\circ}C)$ were in the range.

Image Fusion Framework for Enhancing Spatial Resolution of Satellite Image using Structure-Texture Decomposition (구조-텍스처 분할을 이용한 위성영상 융합 프레임워크)

  • Yoo, Daehoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.21-29
    • /
    • 2019
  • This paper proposes a novel framework for image fusion of satellite imagery to enhance spatial resolution of the image via structure-texture decomposition. The resolution of the satellite imagery depends on the sensors, for example, panchromatic images have high spatial resolution but only a single gray band whereas multi-spectral images have low spatial resolution but multiple bands. To enhance the spatial resolution of low-resolution images, such as multi-spectral or infrared images, the proposed framework combines the structures from the low-resolution image and the textures from the high-resolution image. To improve the spatial quality of structural edges, the structure image from the low-resolution image is guided filtered with the structure image from the high-resolution image as the guidance image. The combination step is performed by pixel-wise addition of the filtered structure image and the texture image. Quantitative and qualitative evaluation demonstrate the proposed method preserves spectral and spatial fidelity of input images.

Spatio-spectral Fusion of Multi-sensor Satellite Images Based on Area-to-point Regression Kriging: An Experiment on the Generation of High Spatial Resolution Red-edge and Short-wave Infrared Bands (영역-점 회귀 크리깅 기반 다중센서 위성영상의 공간-분광 융합: 고해상도 적색 경계 및 단파 적외선 밴드 생성 실험)

  • Park, Soyeon;Kang, Sol A;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.523-533
    • /
    • 2022
  • This paper presents a two-stage spatio-spectral fusion method (2SSFM) based on area-to-point regression kriging (ATPRK) to enhance spatial and spectral resolutions using multi-sensor satellite images with complementary spatial and spectral resolutions. 2SSFM combines ATPRK and random forest regression to predict spectral bands at high spatial resolution from multi-sensor satellite images. In the first stage, ATPRK-based spatial down scaling is performed to reduce the differences in spatial resolution between multi-sensor satellite images. In the second stage, regression modeling using random forest is then applied to quantify the relationship of spectral bands between multi-sensor satellite images. The prediction performance of 2SSFM was evaluated through a case study of the generation of red-edge and short-wave infrared bands. The red-edge and short-wave infrared bands of PlanetScope images were predicted from Sentinel-2 images using 2SSFM. From the case study, 2SSFM could generate red-edge and short-wave infrared bands with improved spatial resolution and similar spectral patterns to the actual spectral bands, which confirms the feasibility of 2SSFM for the generation of spectral bands not provided in high spatial resolution satellite images. Thus, 2SSFM can be applied to generate various spectral indices using the predicted spectral bands that are actually unavailable but effective for environmental monitoring.

Accuracy Assessment of Sharpening Algorithms of Thermal Infrared Image Based on UAV (UAV 기반 TIR 영상의 융합 기법 정확도 평가)

  • Park, Sang Wook;Choi, Seok Keun;Choi, Jae Wan;Lee, Seung Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.555-563
    • /
    • 2018
  • Thermal infrared images have the characteristic of being able to detect objects that can not be seen with the naked eye and have the advantage of easily obtaining information of inaccessible areas. However, TIR (Thermal InfraRed) images have a relatively low spatial resolution. In this study, the applicability of the pansharpening algorithm used for satellite imagery on images acquired by the UAV (Unmanned Aerial Vehicle) was tested. RGB image have higher spatial resolution than TIR images. In this study, pansharpening algorithm was applied to TIR image to create the images which have similar spatial resolution as RGB images and have temperature information in it. Experimental results show that the pansharpening algorithm using the PC1 band and the average of RGB band shows better results for the quantitative evaluation than the other bands, and it has been confirmed that pansharpening results by ATWT (${\grave{A}}$ Trous Wavelet Transform) exhibit superior spectral resolution and spatial resolution than those by HPF (High-Pass Filter) and SFIM (Smoothing Filter-based Intensity Modulation) pansharpening algorithm.

The change of land cover classification accuracies according to spatial resolution in case of Sunchon bay coastal wetland (위성영상 해상도에 따른 순천만 해안습지의 분류 정확도 변화)

  • Ku, Cha-Yong;Hwang, Chul-Sue
    • Journal of the Korean association of regional geographers
    • /
    • v.7 no.1
    • /
    • pp.35-50
    • /
    • 2001
  • Since remotely sensed images of coastal wetlands are very sensitive to spatial resolution, it is very important to select an optimum resolution for particular geographic phenomena needed to be represented. Scale is one of the most important factors in spatial analysis techniques, which is defined as a spatial and temporal interval for a measurement or observation and is determined by the spatial extent of study area or the measurement unit. In order to acquire the optimum scale for a particular subject (i.e., coastal wetlands), measuring and representing the characteristics of attribute information extracted from the remotely sensed images are required. This study aims to explore and analyze the scale effects of attribute information extracted from remotely sensed coastal wetlands images. Specifically, it is focused on identifying the effects of scale in response to spatial resolution changes and suggesting a methodology for exploring the optimum spatial resolution. The LANDSAT TM image of Sunchon Bay was classified by a supervised classification method, Six land cover types were classified and the Kappa index for this classification was 84.6%. In order to explore the effects of scale in the classification procedure, a set of images that have different spatial resolutions were created by a aggregation method. Coarser images were created with the original image by averaging the DN values of neighboring pixels. Sixteen images whose resolution range from 30 m to 480 m were generated and classified to obtain land cover information using the same training set applied to the initial classification. The values of Kappa index show a distinctive pattern according to the spatial resolution change. Up to 120m, the values of Kappa index changed little, but Kappa index decreased dramatically at the 150m. However, at the resolution of 240 m and 270m, the classification accuracy was increased. From this observation, the optimum resolution for the study area would be either at 240m or 270m with respect to the classification accuracy and the best quality of attribute information can be obtained from these resolutions. Procedures and methodologies developed from this study would be applied to similar kinds and be used as a methodology of identifying and defining an optimum spatial resolution for a given problem.

  • PDF

An Approach to Fuse IKONOS Images by Wavelet Transformation

  • Zhu, Changqing;Wang, Yuhai
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.776-782
    • /
    • 2003
  • This paper develops an approach to fuse 1-meter resolution spatial panchromatic and 4-meter resolution multi-spectral IKONOS images. The approach is based on the characteristics of four-band wavelet transformation. The experiment shows that the fused images based on four-band wavelet method contain with not only high spatial resolution but also rich spectral characteristic.

  • PDF

Super-spatial resolution method combined with the maximum-likelihood expectation maximization (MLEM) algorithm for alpha imaging detector

  • Kim, Guna;Lim, Ilhan;Song, Kanghyon;Kim, Jong-Guk
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2204-2212
    • /
    • 2022
  • Recently, the demand for alpha imaging detectors for quantifying the distributions of alpha particles has increased in various fields. This study aims to reconstruct a high-resolution image from an alpha imaging detector by applying a super-spatial resolution method combined with the maximum-likelihood expectation maximization (MLEM) algorithm. To perform the super-spatial resolution method, several images are acquired while slightly moving the detector to predefined positions. Then, a forward model for imaging is established by the system matrix containing the mechanical shifts, subsampling, and measured point-spread function of the imaging system. Using the measured images and system matrix, the MLEM algorithm is implemented, which converges towards a high-resolution image. We evaluated the performance of the proposed method through the Monte Carlo simulations and phantom experiments. The results showed that the super-spatial resolution method was successfully applied to the alpha imaging detector. The spatial resolution of the resultant image was improved by approximately 12% using four images. Overall, the study's outcomes demonstrate the feasibility of the super-spatial resolution method for the alpha imaging detector. Possible applications of the proposed method include high-resolution imaging for alpha particles of in vitro sliced tissue and pre-clinical biologic assessments for targeted alpha therapy.

Efficient Image Retrieval using Minimal Spatial Relationships (최소 공간관계를 이용한 효율적인 이미지 검색)

  • Lee, Soo-Cheol;Hwang, Een-Jun;Byeon, Kwang-Jun
    • Journal of KIISE:Databases
    • /
    • v.32 no.4
    • /
    • pp.383-393
    • /
    • 2005
  • Retrieval of images from image databases by spatial relationship can be effectively performed through visual interface systems. In these systems, the representation of image with 2D strings, which are derived from symbolic projections, provides an efficient and natural way to construct image index and is also an ideal representation for the visual query. With this approach, retrieval is reduced to matching two symbolic strings. However, using 2D-string representations, spatial relationships between the objects in the image might not be exactly specified. Ambiguities arise for the retrieval of images of 3D scenes. In order to remove ambiguous description of object spatial relationships, in this paper, images are referred by considering spatial relationships using the spatial location algebra for the 3D image scene. Also, we remove the repetitive spatial relationships using the several reduction rules. A reduction mechanism using these rules can be used in query processing systems that retrieve images by content. This could give better precision and flexibility in image retrieval.

Establishment of Geometric Correction Data using LANDSAT Satellite Images over the Korean Peninsular (한반도지역 LANDSAT 위성영상의 기하보정 데이터 구축)

  • Yoon, Geun-Won;Park, Jeong-Ho;Chae, Gee-Ju;Park, Jong-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.98-106
    • /
    • 2003
  • Because satellite images have the advantage of high resolution, multi-spectral, revisit and wide swath characteristics, it is increased to utilize satellite image and get information little by little in nowadays. In order to utilize remote sensed images effectively, it is necessary to process satellite images through many processing steps. Among them, geometric correction is essential step for satellite image processing. In this study, we constructed geometric correction data using LANDSAT satellite images. First, we extracted GCPs from maps and constructed database over the Korean peninsular. Second, LANDSAT satellite images, 165 scenes were corrected geometrically using GCP database. Finally, we made 7 mosaic images by means of geometric correction images over Korean peninsular. We think that constructed geometric correction data will be used for many application fields as basic data.

  • PDF