• Title/Summary/Keyword: Spatial coordinates

Search Result 320, Processing Time 0.029 seconds

Analysis of National Control Points in Jeju Area (제주지역의 국가 기준점 정확도 분석)

  • Jung young-dong;Yang young-bo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.3
    • /
    • pp.273-282
    • /
    • 2005
  • A rapidly developed satellite technology is used in comprehensive fields such as spatial data aquisition and applications. Especially a GPS positioning is expected to reinvigorate at the national reference system changes to ITRF (International Terrain Reference Frame). Currently the National Geographic Information Institute (NGII) issues a triangulation point coordinate by separating old and new coordinates and in the year of 2007 it will be scheduled to be changed ITRF. The triangulation point coordinate in Cheju area causes some problems due to the difference original observation and re-observation. Thus in this study a GPS observation is conducted after re-organizing geodetic network based on 1st and 2nd order triangulation in order to check the current triangulation points in Cheju area. After the GPS observation data analysis, stable points were extracted, proposed a geodetic network and its application.

Analytical Study on the Slewing Dynamics of Hybrid Coordinate Systems (복합좌표계 시스템의 선회동역학에 관한 해석적 연구)

  • Suk, Jin-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.36-44
    • /
    • 2003
  • In this paper, an analytic solution method is proposed to overcome the numerical problems when the slewing dynamics of hybrid coordinate systems is investigated via time finite element analysis. It is shown that the dynamics of the hybrid coordinate systems is governed by the coupled dual differential equations for both slewing and structural modes. Structural modes are transformed into the time-based modal coordinates and analytic spatial propagation equations are derived for each space-dependent time mode. Slew angle history is obtained analytically by appropriate applications of the boundary conditions and structural propagation is re-calculated using the slew angle. Numerical examples are demonstrated to validate the proposed analytic method in comparison to the existing state transition matrix method.

ROI Detection by Genetic Algorithm Based on Probability Map (확률맵 기반 유전자 알고리즘에 의한 ROI 검출)

  • Park, Hee-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.3028-3035
    • /
    • 2010
  • This paper propose a genetic method based on probability map to detect region of the lips on a natural image with the faces. The method has many solutions in order to detect regions such as the lips instead of one optimal solution of existing methods. To do this, it represents a pair of spatial coordinates as a chromosome, and introduces genetic operations like conservation interval, the number of generations and non-overlapping selection. By using the probability map of the HS in HSV color space, it increases adaptability to similar color that is a property of genetic algorithm. In our experiments, the optimal value of the important parameter $\beta$ was analyzed, which was used as the condition of an ending function and affected performance of the proposed algorithm. Also the algorithm was analyzed on what performance it has when its mating methods are different. The results of the experiment showed that our algorithm could be flexibly adapted for detecting other ROIs.

The Optimized Detection Range of RFID-based Positioning System using k-Nearest Neighbor Algorithm

  • Kim, Jung-Hwan;Heo, Joon;Han, Soo-Hee;Kim, Sang-Min
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.297-302
    • /
    • 2008
  • The positioning technology for a moving object is an important and essential component of ubiquitous computing environment and applications, for which Radio Frequency Identification(RFID) has been considered as a core technology. RFID-based positioning system calculates the position of moving object based on k-nearest neighbor(k-nn) algorithm using detected k-tags which have known coordinates and kcan be determined according to the detection range of RFID system. In this paper, RFID-based positioning system determines the position of moving object not using weight factor which depends on received signal strength but assuming that tags within the detection range always operate and have same weight value. Because the latter system is much more economical than the former one. The geometries of tags were determined with considerations in huge buildings like office buildings, shopping malls and warehouses, so they were determined as the line in I-Dimensional space, the square in 2-Dimensional space. In 1-Dimensional space, the optimal detection range is determined as 125% of the tag spacing distance through the analytical and numerical approach. Here, the analytical approach means a mathematical proof and the numerical approach means a simulation using matlab. But the analytical approach is very difficult in 2-Dimensional space, so through the numerical approach, the optimal detection range is determined as 134% of the tag spacing distance in 2-Dimensional space. This result can be used as a fundamental study for designing RFID-based positioning system.

  • PDF

The Optimized Detection Range of RFID-based Positioning System using k-Nearest Neighbor Algorithm

  • Kim, Jung-Hwan;Heo, Joon;Han, Soo-Hee;Kim, Sang-Min
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.270-271
    • /
    • 2008
  • The positioning technology for a moving object is an important and essential component of ubiquitous communication computing environment and applications, for which Radio Frequency IDentification Identification(RFID) is has been considered as also a core technology for ubiquitous wireless communication. RFID-based positioning system calculates the position of moving object based on k-nearest neighbor(k-nn) algorithm using detected k-tags which have known coordinates and k can be determined according to the detection range of RFID system. In this paper, RFID-based positioning system determines the position of moving object not using weight factor which depends on received signal strength but assuming that tags within the detection range always operate and have same weight value. Because the latter system is much more economical than the former one. The geometries of tags were determined with considerations in huge buildings like office buildings, shopping malls and warehouses, so they were determined as the line in 1-Dimensional space, the square in 2-Dimensional space and the cubic in 3-Dimensional space. In 1-Dimensional space, the optimal detection range is determined as 125% of the tag spacing distance through the analytical and numerical approach. Here, the analytical approach means a mathematical proof and the numerical approach means a simulation using matlab. But the analytical approach is very difficult in 2- and 3-Dimensional space, so through the numerical approach, the optimal detection range is determined as 134% of the tag spacing distance in 2-Dimensional space and 143% of the tag spacing distance in 3-Dimensional space. This result can be used as a fundamental study for designing RFID-based positioning system.

  • PDF

Analysis of Location Characteristic for Farmstead using GIS Method - With Rural Areas of Cheonan-city - (GIS 기법을 이용한 축산농장의 입지특성 분석 - 천안시 농촌지역을 중심으로 -)

  • Kim, Yong-Hoon;Kim, Dae-Sik
    • Journal of Korean Society of Rural Planning
    • /
    • v.18 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • This study used GIS method for the characteristic analysis of farmstead location in study area. The present study surveyed the coordinates of location for 76 livestock farmsteads with big size in rural areas within city of Cheonan. Based on the surveyed data, this study analyzed the spatial characteristics of location for the farmsteads by using both new evaluation criteria and their corresponding GIS (geographic information system) layers developed in this research. The criteria consist of six factors, which are 2 geographic factors for slope(SLO) and aspect(ASP) of earth surface, 3 accessability factors for distance from water area(DWA), road(DRO), and built-up area(DBA), including type of landuse(TLA). In the analysis results of six criteria using the grid funcations of GIS, the highest distributed ratios of the farmsteads per criterion were found at the lower slope area less then 2% in SLO, the area with south and south-east direction in ASP, the area with distance between 500m and 1,000m in both DWA and DRO, the area within 500m in DWA, and the paddy and upland area in TLA. As new finding of this study, these analysis results seemed that the farmsteads have been located at the better places with the priority to build and manage conveniently and economically.

Accuracy Evaluation of Cadastral Surveying using Data of Parcel Based Land Information System (필지중심토지정보시스템 자료를 이용한 지적측량 정확도 평가)

  • Ju, Jeong-Jun;Kim, Seong-Sam;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.3 s.30
    • /
    • pp.23-31
    • /
    • 2004
  • Cadastral surveying is related to demarcating legal boundaries and areas for the sake of registering a properly on cadastral records or restoring registered boundaries on the ground. It is composed of control surveying (cadastral triangulation and supplementary control surveying) and detail surveying. Detail surveying is classified into plane table surveying by graphical cadastral map and numerical surveying by boundary point coordinates. In this study we compared the accuracy of plane table surveying with numerical surveying using Parcel Based Land Information System(PBLIS) data constructed by the cadastral map digitalization business. In conclusion the result by numerical surveying was analyzed as more accurate than the result of plane table surveying, as Root Mean Square Errors(RMSE) of graphical cadastral surveying is 0.766m and that of numerical cadastral surveying using Total Station(T/S) is 0.683m. Therefore, PBLIS data is expected to be used for surveying legal boundaries and areas in the near future.

  • PDF

Surface Information Acquisition for Asphalt Concrete Pavement Using Digital Video Camera (디지털 비디오카메라를 이용한 아스팔트 콘크리트 포장 노면 정보획득)

  • Seo, Jeong-Hoon;Seo, Dong-Ju;Lee, Jong-Chool;Lee, Sung-Rock
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.3 s.30
    • /
    • pp.51-59
    • /
    • 2004
  • In the study, there has been a sharp upward trend in road maintenance cost as the expansion of road networks increases. Running a pavement management system(PMS) is indispensable for efficient and scientific maintenance of the whole road networks with limited maintenance budgets. With a PMS, a maintenance plan should be drawn up after surface conditions are precisely examined and analyzed. The majority of the present PMSs are run by the fact that experts first examine surface conditions on sites, and then enter results into systems. However, considering the actual circumstances of the present time and the increase in paved road hereafter, it is inefficient that experts examine the whole paved roads in person and long-lasting PMSs can not be kept up. As a result, after analyzing the accuracy of 3-D coordinates representing road surfaces that was decided using multi orientation and digital photogrammetry, the average of standard errors turned out to be 0.0427m on the X-axis, 0.0527m on the Y-axis and 0.1539m on the Z-axis. It was found to be good enough to be put to practical use for maps drawn on scales below 1 :1000, which are being currently made and used within the country, and GIS data.

  • PDF

Study on MEMS based IMU & GPS Performance in Urban Area for Light-Weighted Mobile Mapping Systems (경량 모바일매핑시스템을 위한 도심지 내 MEMS 기반 IMU/GPS 통합센서(MTi-G) 특성 연구)

  • Woo, Hee-Sook;Kwon, Kwang-Seok;Kim, Byung-Guk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.1
    • /
    • pp.65-72
    • /
    • 2012
  • With the development of MEMS, small and low-priced sensors integrating IMU and GPS have produced and exploited for diverse field. In this research, we have judged that MEMS-based IMU/GPS sensor is suitable for light-weighted mobile mapping system and carried out experiments to analyze the characteristics of MTi-G, which was developed from XSens company. From a sensor which fixed to dashboard, coordinates results with no post-processing were achieved for test area. On the whole, the results show satisfactory performances but some errors also were discovered from parts of the road due to sensor properties, XKF characteristics and GPS reception environment. We could confirm the potential of light-weighted mobile mapping system. Experiments considering various GPS reception environments and road condition and more detailed level of accuracy analysis will be performed for further research.

An Analysis of GPS Station Positioning Accuracy Variations According to Locations of Obstacles (장애물 위치에 따른 GPS 기준국 측위정확도 변화분석)

  • Sohn, Dong-Hyo;Park, Kwan-Dong;Jung, Wan-Suk;Kee, Changdon
    • Journal of Navigation and Port Research
    • /
    • v.37 no.5
    • /
    • pp.463-469
    • /
    • 2013
  • This paper focuses on GPS positioning accuracy variations according to locations of obstacles which surround GPS station. We derived precise coordinates of a GPS station which has a good visibility. Its observation data was rewritten by assuming signal blocking due to obstacle in the elevation angle of $10^{\circ}$ to $70^{\circ}$. We processed daily and hourly data for 10 days. In the results using daily data, RMSE was at 10mm level. And RMSE increased to 100mm levels in case of hourly data. As the elevation angle of obstacle increased, the horizontal and vertical RMSE increased, while the height estimates decreased. These results showed the higher the elevation angle of the obstacle increased the loss of large amounts of data by blocking satellite signals direction. In terms of the direction, when the blocking thing was located in the east or west, the coordinate has larger error in the east-west direction. And if signal was blocked at the south direction, the difference between the east-west error and the south-north position error was reduced.