• Title/Summary/Keyword: Spatial Information Map

Search Result 1,546, Processing Time 0.026 seconds

Flood Runoff Analysis using Radar Rainfall and Vflo Model for Namgang Dam Watershed (레이더강우와 Vflo모형을 이용한 남강댐유역 홍수유출해석)

  • Park, Jin-Hyeog;Kang, Boo-Sik;Lee, Geun-Sang;Lee, Eul-Rae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.3
    • /
    • pp.13-21
    • /
    • 2007
  • Recently, very short-term rainfall forecast using radar is required for regional flash flood according to climate change. This research is to evaluate the feasibility of GIS based distributed model using radar rainfall which can express temporal and spatial distribution in actual dam watershed during flood runoff period. Vflo model which was developed Oklahoma university was used as physical based distributed model, and Namgang dam watershed ($2,293km^2$) was applied as study site. Distributed rainfall according to grid resolution was generated by using K-RainVieux, preprocess program of radar rainfall, from JIN radar. Also, GIS hydrological parameters were extracted from basic GIS data such as DEM, land cover and soil map, and used as input data of distributed model(Vflo). Results of this research can provide a base for building of real-time short-term rainfall runoff forecast system according to flash flood in near future.

  • PDF

A Hybrid Dasymetric Mapping for Population Density Surface using Remote Sensing Data (원격탐사자료를 바탕으로 인구밀도 분포 작성을 위한 하이브리드 대시메트릭 지도법)

  • Kim, Hwa-Hwan;Choi, Jin-Mu
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.1
    • /
    • pp.67-80
    • /
    • 2011
  • Choropleth mapping of population distribution is based on the assumption that people are uniformly distributed throughout each enumeration unit. Dasymetric mapping technique improves choropleth mapping by refining spatially aggregated data with residential information. Further, pycnophylactic interpolation can upgrade dasymetric mapping by considering population distribution of neighboring areas, while preserving the volumes of original units. This study proposed a combined solution of dasymetric mapping and pycnophylactic interpolation to improve the accuracy of population density distribution. Specifically, the dasymetric method accounts for the spatial distribution of population within each census unit, while pycnophylactic interpolation considers population distribution of neighboring area. This technique is demonstrated with 1990 census data of the Athens, GA. with land use land cover information derived from remotely-sensed imagery for the areal extent of populated areas. The results are evaluated by comparison between original population counts of smaller census units (census block groups) and population counts of the grid map built from larger units (census tracts) aggregated to the same areal units. The estimated populations indicate a satisfactory level of accuracy. Population distribution acquired by the suggested method can be re-aggregated to any type of geographic boundaries such as electoral boundaries, school districts, and even watershed for a variety of applications.

Application of Hydroacoustic System and Kompsat-2 Image to Estimate Distribution of Seagrass Beds (수중음향과 Kompsat-2 위성영상을 이용한 해초지 분포 추정)

  • Kim, Keunyong;Eom, Jinah;Choi, Jong-Kuk;Ryu, Joo-Hyung;Kim, Kwang Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.3
    • /
    • pp.181-188
    • /
    • 2012
  • Despite the ecological importance of seagrass beds, their distributional information in Korean coastal waters is insufficient. Therefore, we used hydroacoustic system to collect accurate bathymetry and classification of seagrass, and Kompsat-2 (4 m spatial resolution) image for detection of seagrass beds at Deukryang Bay, Korea. The accuracy of Kompsat-2 image classification was evaluated using hydracoustic survey result using error matrix and Kappa value. The total area of seagrass beds from satellite image classification was underestimated compared to the hydroacoustic survey, estimated 3.9 and $4.5km^2$ from satellite image and hydroacoustic data, respectively. Nonetheless, the accuracy of Kompsat-2 image classification over hydroacoustic-based method showing 90% (Kappa=0.85) for the three class maps (seagrass, unvegetated seawater and aquaculture). The agreement between the satellite image classification and the hydroacoustic result was 77.1% (the seagrass presence/absence map). From our result of satellite image classification, Kompsat-2 image is suitable for mapping seagrass beds with high accuracy and non-destructive method. For more accurate information, more researches with a variety of high-resolution satellite image will be preceded.

The Development of a GIS-based Sewer-network Analysis System (GIS를 이용한 하수관망해석시스템 개발)

  • Lee, Jung-Hun;Kim, Kye-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.6 no.2 s.12
    • /
    • pp.69-79
    • /
    • 1998
  • It is one of the most crutial thing to secure efficient infrastructure of social infrastructure Including rna drinking water, sewer, gas, and electricity, etc. in modern society. Among them, the sourer system need to be properly maintained so as to sustain water quality over the large watershed thereby to provide reasonable level of living environment A few municipalities and private firms have so in been using sewer management system for assessing existing sewer network and auxiliary facilities. Such existing system can only provide functions to manage the sewer pipe itself and they can not fully estimate the amount of sewage water over the pipe through 4he network analysis due to the deficiency of the system Such a limited sewer network analysis function can only analyze the whole network under the assumption of uniformity. The results from such a process can not be fully implemented in the field. Therefore, this study emphasized the development of a sewer management system which can provide practical values from network analysts considering areal peculiarities using a zoning map utilizing a GIS. The system can support analyzing scenarios due to the changes of sewer amounts from the changes of population densities and rainfall amounts not to mention of calculating sewer amount for individual sewer pipes. furthermore, the system can support the decision making for better designing sewer facilities from the expansion of metropolitan areas and constructing satellite cities. Eventually, it will contribute to enhance the effectiveness of sewer-related works and services for residents as well as supporting a decision making for minor and major trouble-shootings.

  • PDF

Efficiency Evaluation of Contour Generation from Airborne LiDAR Data (LiDAR 데이터를 이용한 등고선 제작의 효율성 평가)

  • Wie, Gwang-Jae;Lee, Im-Pyeong;Kang, In-Gu;Cho, Jae-Myoung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.2 s.40
    • /
    • pp.59-66
    • /
    • 2007
  • The digital working environment and its related technology have been rapidly expanding. In the surveying field, we have changed from using optical film cameras and plotters to digital cameras, multi sensors like GPS/INS etc,. The old analog work flow is replaced by a new digital work flow. Accurate data of the land is used in various fields, efficient utilization and management of land, urban planning, disaster and environment management. It is important because it is an essential infrastructure. For this study, LiDAR surveying was used to get points clouds in the study area. It has a high vegetation penetrating advantage and we used a digital process from planning to the final products. Contour lines were made from LiDAR data and compared with national digital base maps (scale 1/1,000 and 1/5,000). As a result, the accuracy and the economical efficiency were evaluated. The accuracy of LiDAR contour data was average $0.089m{\pm}0.062\;m$ and showed high ground detail in complex areas. Compared with 1/1,000 scale contour line production when surveying an area over $100\;km^2$, approximately 48% of the cost was reduced. Therefore we prepose LiDAR surveying as an alternative to modify and update national base maps.

  • PDF

Application of Flood Discharge for Gumgang Watershed Using GIS-based K-DRUM (GIS기반 K-DRUM을 이용한 금강권 대유역 홍수유출 적용)

  • Park, Jin-Hyeog;Hur, Young-Teck
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.11-20
    • /
    • 2010
  • The distributed rainfall-runoff model which is developed in the country requires a lot of time and effort to generate input data. Also, it takes a lot of time to calculate discharge by numerical analysis based on kinematic wave theory in runoff process. Therefore, most river basins using the distributed model are of limited scale, such as small river basins. However, recently, the necessity of integrated watershed management has been increasing due to change of watershed management concept and discharge calculation of whole river basin, including upstream and downstream of dam. Thus, in this study, the feasibility of the GIS based physical distributed rainfall-runoff model, K-DRUM(K-water hydrologic & hydraulic Distributed RUnoff Model) which has been developed by own technology was reviewed in the flood discharge process for the Geum River basin, including Yongdam and Daecheong Dam Watersheds. GIS hydrological parameters were extracted from basic GIS data such as DEM, land cover and soil map, and used as input data of the model. Problems in running time and inaccuracy setting using the existing trial and error method were solved by applying an auto calibration method in setting initial soil moisture conditions. The accuracy of discharge analysis for application of the method was evaluated using VER, QER and Total Error in case of the typhoon 'Ewiniar' event. and the calculation results shows a good agreement with observed data.

Development of GIS for the Food Chain Assessment around Kori Nuclear Power Plant Using ArcView (ArcView를 이용한 고리 원전 주변 육상생태계 평가를 위한 GIS 구축)

  • Kang, H.S.;Choi, H.J.;Yu, D.H.;Keum, D.K.;Choi, Y.H.;Lim, K.M.;Lee, H.S.;Lee, C.W.
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.3
    • /
    • pp.121-130
    • /
    • 2005
  • Geographical Information System(GIS) was established to display the calculation results which show the concentration change with time and regions in case of an accidental release of radionuclides from Kori Nuclear Power Plants. GIS included the commercial program, ArcView(ESRI), and a basic digital map of 1:5000 scale lot 20km by 20km around Kori area. The object for the presentation was $^{131}I$ concentration in rice which is one of staple foodstuffs. Provided by deposited $^{131}I$ concentrations, ECOREA-II code computed the $^{131}I$ concentration of the soil and the plant in the area divided by In unit cells in total, in which the concentrations also varied with time. The results were introduced into the attributed data of previously designed polygon cells in ArcView. In order to display the concentration change with time by monotonic color, the RGB value for ArcView color lamp was controlled. This display definitely helped the concentration change around Kori area be acceptable to public.

A Study on the Development of GIS based Integrated Information System for Water Quality Management of Yeongsan River Estuary (영산강 하구역 수질환경 관리를 위한 GIS기반 통합정보시스템 개발에 관한 연구)

  • Lee, Sung Joo;Kim, Kye Hyun;Park, Young Gil;Lee, Geon Hwi;Yoo, Jea Hyun
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.73-83
    • /
    • 2014
  • The government has recently carried out monitoring to attain a better understanding of the current situation and model for prediction of future events pertaining to water quality in the estuarine area of Yeongsan River. But many users have noted difficulties to understand and utilize the results because most monitoring and model data consist of figures and text. The aim of this study is to develop a GIS-based integrated information system to support the understanding of the current situation and prediction of future events about water quality in the estuarine area of Yeongsan River. To achieve this, a monitoring DB is assembled, a linkages model is defined, a GUI is composed, and the system development environment and system composition are defined. The monitoring data consisted of observation data from 2010 ~ 2012 in the estuarine area of Yeongsan River. The models used in the study are HSPF (Hydrological Simulation Program-Fortran) for simulation of the basin and EFDC (Environmental Fluid Dynamics Code) for simulation of the estuary and river. Ultimately, a GIS based system was presented for utilization and expression using monitoring and model data. The system supports prediction of the estuarine area ecological environment quantitatively and displays document type model simulation results in a map-based environment to enhance the user's spatial understanding. In future study, the system will be updated to include a decision making support system that is capable of handling estuary environment issues and support environmental assessment and development of related policies.

Evaluation of Accuracy and Utilization of the Drone Photogrammetry for Open-pit Mine Monitoring (노천광산 모니터링을 위한 드론 사진측량의 정확도 및 활용성 평가)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.191-196
    • /
    • 2019
  • The development of open-pit mines leads to large-area topographical changes in highland forests and can lead to severe deterioration of forests, requiring continuous monitoring. The drone photogrammetry is performed at a lower altitude than the existing manned aerial photogrammetry, and thus has a relatively high accuracy. The purpose of this study is to construct spatial information of large open pit mine using drone photogrammetry and to evaluate the accuracy and utilization of the results. The accuracy of the drone photogrammetric results was 0.018 ~ 0.063m in the horizontal direction and 0.027m ~ 0.088m in the vertical direction. These results satisfy the permissible accuracy of 1: 1,000 digital topographic map and it can be used for open mine monitoring. The geospatial information of the open pit mine can be used in various ways, and it can be used to monitor the quantitative change of a specific area for time series change through data management by periodic data acquisition. If drone photogrammetry is applied to open-pit mine monitoring in the future, work time and cost can be greatly reduced compared to the conventional GNSS or total station method, and the work efficiency can be greatly improved because more visible data can be generated.

A Study on the Relationship between Land Cover Type and Urban Temperature - focused on Gimhae city - (토지피복유형 특성과 도시 온도의 관계 분석 - 김해시를 대상으로 -)

  • SONG, Bong-Geun;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.65-81
    • /
    • 2019
  • This study analyzed the relationship of land cover type, urban temperature in Gimhae city, Gyeongsangnam-do, South Korea. Date were used for land cover map, MODIS LST, and detailed temperature data on the Korean Peninsula based on RCP between 2000 and 2010. The correlation between urban area and surface temperature was 0.417, 0.512 for agricultural area and -0.607 for forest area. The correlation between surface temperature and air temperature was 0.301. The relationship with air temperature was analyzed as 0.275 for urban area, agriculture area 0.226, forest area 0.350. Urban and agricultural areas showed increased surface and air temperature as the area increased, while forest areas showed opposite improvements. In structural equation models, urban and agricultural areas had direct effects on the rise of surface temperature, whle forest areas had direct effects on the reduction of air temperature. In the future, it is necessary to use measured temperature data near the surface to understand the relationship between surface temperature and temperature according to the changes in spatial characteristics, which will prepare measures for urban heat island mitigation at the level of urban and environmental planning.