Distributed compressed sensing (DCS) states that we can recover the sparse signals from very few linear measurements. Various studies about DCS have been carried out recently. In many practical applications, there is no prior information except for standard sparsity on signals. The typical example is the sparse signals have block-sparse structures whose non-zero coefficients occurring in clusters, while the cluster pattern is usually unavailable as the prior information. To discuss this issue, a new algorithm, called backtracking-based adaptive orthogonal matching pursuit for block distributed compressed sensing (DCSBBAOMP), is proposed. In contrast to existing block methods which consider the single-channel signal reconstruction, the DCSBBAOMP resorts to the multi-channel signals reconstruction. Moreover, this algorithm is an iterative approach, which consists of forward selection and backward removal stages in each iteration. An advantage of this method is that perfect reconstruction performance can be achieved without prior information on the block-sparsity structure. Numerical experiments are provided to illustrate the desirable performance of the proposed method.
In this paper, we consider a binary recovery framework of the Compressed Sensing (CS) problem. We derive an upper bound for $L_0$ recovery performance of a binary sparse signal in terms of the dimension N and sparsity K of signals, the number of measurements M. We show that the upper bound obtained from this work goes to the limit bound when the sensing matrix sufficiently become dense. In addition, for perfect recovery performance, if the signals are very sparse, the sensing matrices required for $L_0$ recovery are little more dense.
We address the problem of Blind Source Separation(BSS) of superimposed signals in situations where one signal has constant or slowly varying intensities at some consecutive locations and at the corresponding locations the other signal has highly varying intensities. Independent Component Analysis(ICA) is a major technique for Blind Source Separation and the existing ICA algorithms fail to estimate the original intensities in the stated situation. We combine the advantages of existing sparse methods and Kernel ICA in our technique, by proposing wavelet packet based sparse decomposition of signals prior to the application of Kernel ICA. Simulations and experimental results illustrate the effectiveness and accuracy of the proposed approach. The approach is general in the way that it can be tailored and applied to a wide range of BSS problems concerning one-dimensional signals and images(two-dimensional signals).
Epilepsy is one of the most prevalent neurological diseases. Electroencephalogram (EEG) signals are widely used for monitoring and diagnosis tool for epileptic seizure. Typically, a huge amount of EEG signals is needed, where they are visually examined by experienced clinicians. In this study, we propose a simple automatic seizure detection framework using intracranial EEG signals. We suggest a sparse approximation based classification (SAC) scheme by solving overdetermined system. L1-norm minimization algorithms are utilized for efficient sparse signal recovery. For evaluation of the proposed scheme, the public EEG dataset obtained by five healthy subjects and five epileptic patients is utilized. The results show that the proposed fast L1-norm minimization based SAC methods achieve the 99.5% classification accuracy which is 1% improved result than the conventional L2 norm based method with negligibly increased execution time (42msec).
We propose and experimentally demonstrate a novel photonic compressive sensing (CS) scheme for acquiring sparse radio frequency signals with adjustable compression ratio in this paper. The sparse signal to be measured and a pseudo-random binary sequence are modulated on consecutively connected chirped pulses. The modulated pulses are compressed into short pulses after propagating through a dispersive element. A programmable optical filter based on spatial light modulator is used to realize spectral segmentation and demultiplexing. After spectral segmentation, the compressed pulses are transformed into several sub-pulses and each of them corresponds to a measurement in CS. The major advantage of the proposed scheme lies in its adjustable compression ratio, which enables the system adaptive to the sparse signals with variable sparsity levels and bandwidths. Experimental demonstration and further simulation results are presented to verify the feasibility and potential of the approach.
In this paper, we consider subcarrier-index modulation (SIM) for precoded orthogonal frequency division multiplexing (OFDM) with a few activated subcarriers per user and its generalization to multi-carrier multiple access systems. The resulting multiple access is called sparse index multiple access (SIMA). SIMA can be considered as a combination of multi-carrier code division multiple access (MC-CDMA) and SIM. Thus, SIMA is able to exploit a path diversity gain by (random) spreading over multiple carriers as MC-CDMA. To detect multiple users' signals, a low-complexity detection method is proposed by exploiting the notion of compressive sensing (CS). The derived low-complexity detection method is based on the orthogonal matching pursuit (OMP) algorithm, which is one of greedy algorithms used to estimate sparse signals in CS. From simulation results, we can observe that SIMA can perform better than MC-CDMA when the ratio of the number of users to the number of multi-carrier is low.
압축센싱은 이미지, 음성신호, 레이더 등 많은 분야에 적용되고 있다. 압축센싱은 주로 통계적 특성이 시불변인 신호에 적용되고 있으며, 측정 데이터를 줄여 압축률을 높일수록 복원에러가 증가한다. 이와 같은 문제점들을 해결하기 위해 음성신호를 프레임 단위로 나누어 병렬로 처리하였으며, dictionary learning을 이용하여 프레임들을 sparse하게 만들고, sparse 계수 벡터와 그 복원값의 차를 이용하여 압축센싱 복원행렬을 적응적으로 만든 적응압축센싱을 적용하였다. 이를 통해 통계적 특성이 시변인 신호도 압축센싱을 이용하여 빠르고 정확한 복원이 가능함을 확인할 수 있었다.
본 논문은 유한체(finite fields)에서 압축센싱(compressed sensing) 프레임워크를 살펴본다. 하나의 측정 샘플은 센싱행렬의 행과 희소 신호 벡터와의 내적으로 연산되며, 본 논문에서 제안하는 확률적 희소 신호 복원 알고리즘을 이용하여 그 압축센싱의 해를 찾고자 한다. 지금까지 압축센싱은 실수(real-valued)나 복소수(complex-valued) 평면에서 주로 연구되어 왔지만, 이와 같은 원신호를 처리하는 경우 이산화 과정으로 정보의 손실이 뒤따르게 된다. 이에 대한 연구배경은 이산(discrete) 신호에 대한 희소 신호를 복원하고자 하는 노력으로 이어지고 있다. 본 연구에서 제안하는 프레임워크는 센싱행렬로써 코딩 이론에서 사용된 LDPC(Low-Density Parity-Check) 코드의 패러티체크 행렬을 이용한다. 그리고 본 연구에서 제안한 확률적 복원 알고리즘을 이용하여 유한체의 희소 신호를 복원한다. 기존의 코딩 이론에서 발표한 LDPC 복호화와는 달리 본 논문에서는 희소 신호의 확률분포를 이용한 반복적 알고리즘을 제안한다. 그리고 개발된 복원 알고리즘을 통하여 우리는 유한체의 크기가 커질수록 복원 성능이 우수한 결과를 얻었다. 압축센싱의 센싱행렬이 LDPC 패러티체크 행렬과 같은 저밀도 행렬에서도 좋은 성능을 보여줌에 따라 이산 신호를 고려한 응용 분야에서 적극적으로 활용될 것으로 기대된다.
In this paper, a new iterative algorithm for reconstructing block sparse signals, called block backtracking-based adaptive orthogonal matching pursuit (BBAOMP) method, is proposed. Compared with existing methods, the BBAOMP method can bring some flexibility between computational complexity and reconstruction property by using the backtracking step. Another outstanding advantage of BBAOMP algorithm is that it can be done without another information of signal sparsity. Several experiments illustrate that the BBAOMP algorithm occupies certain superiority in terms of probability of exact reconstruction and running time.
압축 센싱은 신호가 성긴 (Sparse) 특성을 지니며 선형 측정된 값들이 Incoherent 할 때, 나이퀴스트율 이하로 표본화된 신호를 원본 신호로 정확하게 복구할 수 있는 새로운 신호 획득 이론이다. 본 논문에서는 원본 신호의 Sparse한 정도에 따라 성능이 변화하는 압축 센싱을 이용한 효율적인 신호 검출 및 추정 기법을 제안하며, 이론적 분석과 함께 모의 실험 결과를 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.