• 제목/요약/키워드: Sparse signal processing

검색결과 33건 처리시간 0.022초

Sparse Kernel Independent Component Analysis for Blind Source Separation

  • Khan, Asif;Kim, In-Taek
    • Journal of the Optical Society of Korea
    • /
    • 제12권3호
    • /
    • pp.121-125
    • /
    • 2008
  • We address the problem of Blind Source Separation(BSS) of superimposed signals in situations where one signal has constant or slowly varying intensities at some consecutive locations and at the corresponding locations the other signal has highly varying intensities. Independent Component Analysis(ICA) is a major technique for Blind Source Separation and the existing ICA algorithms fail to estimate the original intensities in the stated situation. We combine the advantages of existing sparse methods and Kernel ICA in our technique, by proposing wavelet packet based sparse decomposition of signals prior to the application of Kernel ICA. Simulations and experimental results illustrate the effectiveness and accuracy of the proposed approach. The approach is general in the way that it can be tailored and applied to a wide range of BSS problems concerning one-dimensional signals and images(two-dimensional signals).

Block Sparse Signals Recovery via Block Backtracking-Based Matching Pursuit Method

  • Qi, Rui;Zhang, Yujie;Li, Hongwei
    • Journal of Information Processing Systems
    • /
    • 제13권2호
    • /
    • pp.360-369
    • /
    • 2017
  • In this paper, a new iterative algorithm for reconstructing block sparse signals, called block backtracking-based adaptive orthogonal matching pursuit (BBAOMP) method, is proposed. Compared with existing methods, the BBAOMP method can bring some flexibility between computational complexity and reconstruction property by using the backtracking step. Another outstanding advantage of BBAOMP algorithm is that it can be done without another information of signal sparsity. Several experiments illustrate that the BBAOMP algorithm occupies certain superiority in terms of probability of exact reconstruction and running time.

희박신호 기법을 이용한 초 분해능 지연시간 추정 알고리즘 (Super-resolution Time Delay Estimation Algorithm using Sparse Signal Reconstruction Techniques)

  • 박형래
    • 전자공학회논문지
    • /
    • 제54권8호
    • /
    • pp.12-19
    • /
    • 2017
  • 본 논문에서는 희박신호 (sparse signal) 기법을 이용하여 대역확산 (spread spectrum) 신호의 지연시간을 추정하는 초 분해능 지연시간 추정 방식을 제안한다. 지금까지 대역확산 신호의 지연시간 추정은 코릴레이션 방식이 주로 이용되어 왔으나 이 방식은 신호들이 한 PN 칩(pseudo-noise chip) 이내의 시간 차로 입사하는 경우에는 지연시간을 정확히 추정할 수 없으며 보다 정확한 추정을 위해 코릴레이션 출력에 대한 추가적인 프로세싱이 필요하다. 최근 들어 희박 신호 (sparse signal) 알고리즘이 도래각 추정 분야에서 각광을 받고 있으며 그 중 SPICE 알고리즘이 가장 대표적이다. 따라서, 본 논문에서는 SPICE 알고리즘을 이용하는 초 분해능 지연시간 추정 알고리즘을 개발하고 ISO/IEC 24730-2.1 RTLS 시스템에 적용하여 MUSIC 알고리즘과 성능을 비교, 분석한다.

Block Sparse Signals Recovery Algorithm for Distributed Compressed Sensing Reconstruction

  • Chen, Xingyi;Zhang, Yujie;Qi, Rui
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.410-421
    • /
    • 2019
  • Distributed compressed sensing (DCS) states that we can recover the sparse signals from very few linear measurements. Various studies about DCS have been carried out recently. In many practical applications, there is no prior information except for standard sparsity on signals. The typical example is the sparse signals have block-sparse structures whose non-zero coefficients occurring in clusters, while the cluster pattern is usually unavailable as the prior information. To discuss this issue, a new algorithm, called backtracking-based adaptive orthogonal matching pursuit for block distributed compressed sensing (DCSBBAOMP), is proposed. In contrast to existing block methods which consider the single-channel signal reconstruction, the DCSBBAOMP resorts to the multi-channel signals reconstruction. Moreover, this algorithm is an iterative approach, which consists of forward selection and backward removal stages in each iteration. An advantage of this method is that perfect reconstruction performance can be achieved without prior information on the block-sparsity structure. Numerical experiments are provided to illustrate the desirable performance of the proposed method.

선택적 sparse coding 기반 측면주사 소나 영상의 고속 초해상도 복원 알고리즘 (A selective sparse coding based fast super-resolution method for a side-scan sonar image)

  • 박재현;양철종;구본화;이승호;김성일;고한석
    • 한국음향학회지
    • /
    • 제37권1호
    • /
    • pp.12-20
    • /
    • 2018
  • 측면주사 소나 영상 획득의 효율성을 향상시키고자 저해상도의 수중 영상을 복원 기법을 이용하여 고화질 영상으로 개선시키는 연구가 시도되고 있다. 측면주사 소나 영상은 광학 영상과 같은 2차원 신호를 사용한다는 측면에서 기존 광학 영상 복원에 적용된 기법의 응용을 고려할 수 있다. 광학 영상에 대한 가장 대표적인 복원 방법 중 하나는 스파스 코딩이며, 수중 영상의 희소성을 분석하여 스파스 코딩 기법을 수중 영상에 적용할 수 있음을 증명하는 연구가 진행되었다. 스파스 코딩은 입력 신호에 대하여 사전과 스파스 계수의 선형 결합으로 복원 신호를 얻는 방식이다. 하지만 스파스 계수의 값을 정확히 추정하기 위해서는 많은 연산량을 필요로 한다. 본 연구에서는 스파스 코딩 기반의 수중 영상 초해상도 복원을 수행하되, 수중 영상 내 객체 영역에 한해서 선택적으로 복원 기법을 적용하는 방법을 제안함으로써 전체 연산 시간을 단축시킨다. 이를 위하여 수중 영상에서 경계를 검출하고 그 분포에 따라 객체 영역과 비객체 영역을 구분하는 방법을 제안하고, 이를 스파스 코딩 기반의 초해상도 복원 기법과 접목시킨다. 실험을 통해 제안하는 방법이 기존 방식과 동일 수준의 PSNR(Peak Signal-to-Noise Ratio) 수치를 유지하며, 영상 복원에 필요한 시간은 32 % 만큼 단축시킴을 확인함으로써 제안 방법의 유효성을 증명하였다.

Method Based on Sparse Signal Decomposition for Harmonic and Inter-harmonic Analysis of Power System

  • Chen, Lei;Zheng, Dezhong;Chen, Shuang;Han, Baoru
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.559-568
    • /
    • 2017
  • Harmonic/inter-harmonic detection and analysis is an important issue in power system signal processing. This paper proposes a fast algorithm based on matching pursuit (MP) sparse signal decomposition, which can be employed to extract the harmonic or inter-harmonic components of a distorted electric voltage/current signal. In the MP iterations, the method extracts harmonic/inter-harmonic components in order according to the spectrum peak. The Fast Fourier Transform (FFT) and nonlinear optimization techniques are used in the decomposition to realize fast and accurate estimation of the parameters. First, the frequency estimation value corresponding to the maxim spectrum peak in the present residual is obtained, and the phase corresponding to this frequency is searched in discrete sinusoids dictionary. Then the frequency and phase estimations are taken as initial values of the unknown parameters for Nelder-Mead to acquire the optimized parameters. Finally, the duration time of the disturbance is determined by comparing the inner products, and the amplitude is achieved according to the matching expression of the harmonic or inter-harmonic. Simulations and actual signal tests are performed to illustrate the effectiveness and feasibility of the proposed method.

Distributed Video Compressive Sensing Reconstruction by Adaptive PCA Sparse Basis and Nonlocal Similarity

  • Wu, Minghu;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권8호
    • /
    • pp.2851-2865
    • /
    • 2014
  • To improve the rate-distortion performance of distributed video compressive sensing (DVCS), the adaptive sparse basis and nonlocal similarity of video are proposed to jointly reconstruct the video signal in this paper. Due to the lack of motion information between frames and the appearance of some noises in the reference frames, the sparse dictionary, which is constructed using the examples directly extracted from the reference frames, has already not better obtained the sparse representation of the interpolated block. This paper proposes a method to construct the sparse dictionary. Firstly, the example-based data matrix is constructed by using the motion information between frames, and then the principle components analysis (PCA) is used to compute some significant principle components of data matrix. Finally, the sparse dictionary is constructed by these significant principle components. The merit of the proposed sparse dictionary is that it can not only adaptively change in terms of the spatial-temporal characteristics, but also has ability to suppress noises. Besides, considering that the sparse priors cannot preserve the edges and textures of video frames well, the nonlocal similarity regularization term has also been introduced into reconstruction model. Experimental results show that the proposed algorithm can improve the objective and subjective quality of video frame, and achieve the better rate-distortion performance of DVCS system at the cost of a certain computational complexity.

Q 인자의 조절이 가능한 이산 웨이브렛 변환을 이용한 디지털 영상처리 (Digital Image Processing Using Tunable Q-factor Discrete Wavelet Transformation)

  • 신종홍
    • 디지털산업정보학회논문지
    • /
    • 제10권3호
    • /
    • pp.237-247
    • /
    • 2014
  • This paper describes a 2D discrete-time wavelet transform for which the Q-factor is easily specified. Hence, the transform can be tuned according to the oscillatory behavior of the image signal to which it is applied. The tunable Q-factor wavelet transform (TQWT) is a fully-discrete wavelet transform for which the Q-factor, Q, of the underlying wavelet and the asymptotic redundancy (over-sampling rate), r, of the transform are easily and independently specified. In particular, the specified parameters Q and r can be real-valued. Therefore, by tuning Q, the oscillatory behavior of the wavelet can be chosen to match the oscillatory behavior of the signal of interest, so as to enhance the sparsity of a sparse signal representation. The TQWT is well suited to fast algorithms for sparsity-based inverse problems because it is a Parseval frame, easily invertible, and can be efficiently implemented. The TQWT can also be used as an easily-invertible discrete approximation of the continuous wavelet transform. The transform is based on a real valued scaling factor (dilation-factor) and is implemented using a perfect reconstruction over-sampled filter bank with real-valued sampling factors. The transform is parameterized by its Q-factor and its oversampling rate (redundancy), with modest oversampling rates (e. g. 3-4 times overcomplete) being sufficient for the analysis/synthesis functions to be well localized. Therefore, This method services good performance in image processing fields.

Adaptive Compressed Sensing과 Dictionary Learning을 이용한 프레임 기반 음성신호의 복원에 대한 연구 (A Study on the Reconstruction of a Frame Based Speech Signal through Dictionary Learning and Adaptive Compressed Sensing)

  • 정성문;임동민
    • 한국통신학회논문지
    • /
    • 제37A권12호
    • /
    • pp.1122-1132
    • /
    • 2012
  • 압축센싱은 이미지, 음성신호, 레이더 등 많은 분야에 적용되고 있다. 압축센싱은 주로 통계적 특성이 시불변인 신호에 적용되고 있으며, 측정 데이터를 줄여 압축률을 높일수록 복원에러가 증가한다. 이와 같은 문제점들을 해결하기 위해 음성신호를 프레임 단위로 나누어 병렬로 처리하였으며, dictionary learning을 이용하여 프레임들을 sparse하게 만들고, sparse 계수 벡터와 그 복원값의 차를 이용하여 압축센싱 복원행렬을 적응적으로 만든 적응압축센싱을 적용하였다. 이를 통해 통계적 특성이 시변인 신호도 압축센싱을 이용하여 빠르고 정확한 복원이 가능함을 확인할 수 있었다.

Adaptive Selective Compressive Sensing based Signal Acquisition Oriented toward Strong Signal Noise Scene

  • Wen, Fangqing;Zhang, Gong;Ben, De
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권9호
    • /
    • pp.3559-3571
    • /
    • 2015
  • This paper addresses the problem of signal acquisition with a sparse representation in a given orthonormal basis using fewer noisy measurements. The authors formulate the problem statement for randomly measuring with strong signal noise. The impact of white Gaussian signals noise on the recovery performance is analyzed to provide a theoretical basis for the reasonable design of the measurement matrix. With the idea that the measurement matrix can be adapted for noise suppression in the adaptive CS system, an adapted selective compressive sensing (ASCS) scheme is proposed whose measurement matrix can be updated according to the noise information fed back by the processing center. In terms of objective recovery quality, failure rate and mean-square error (MSE), a comparison is made with some nonadaptive methods and existing CS measurement approaches. Extensive numerical experiments show that the proposed scheme has better noise suppression performance and improves the support recovery of sparse signal. The proposed scheme should have a great potential and bright prospect of broadband signals such as biological signal measurement and radar signal detection.