• Title/Summary/Keyword: Sparse Channel Estimation

Search Result 30, Processing Time 0.024 seconds

Performance evaluation of estimation methods based on analysis of mean square error bounds for the sparse channel (Sparse 채널에서 최소평균오차 경계값 분석을 통한 채널 추정 기법의 성능 비교)

  • Kim, Hyeon-Su;Kim, Jae-Young;Park, Gun-Woo;Choi, Young-Kwan;Chung, Jae-Hak
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.53-58
    • /
    • 2012
  • In this paper, we evaluate and analyze representative estimation methods for the sparse channel. In order to evaluate error performance of matching pursuit(MP) and minimum mean square error(MMSE) algorithm, lower bound of MMSE is determined by Cramer-Rao bound and compared with upper bound of MP. Based on analysis of those bounds, mean square error of MP which is effective in the estimation of sparse channel can be larger than that of MMSE according to the number of estimated tap and signal-to-noise ratio. Simulation results show that the performances of both algorithm are reversed on the sparse channel with Rayleigh fading according to signal-to-noise ratio.

Sparse Channel Estimation of Single Carrier Frequency Division Multiple Access Based on Compressive Sensing

  • Zhong, Yuan-Hong;Huang, Zhi-Yong;Zhu, Bin;Wu, Hua
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.342-353
    • /
    • 2015
  • It is widely accepted that single carrier frequency division multiple access (SC-FDMA) is an excellent candidate for broadband wireless systems. Channel estimation is one of the key challenges in SC-FDMA, since accurate channel estimation can significantly improve equalization at the receiver and, consequently, enhance the communication performances. In this paper, we study the application of compressive sensing for sparse channel estimation in a SC-FDMA system. By skillfully designing pilots, their patterns, and taking advantages of the sparsity of the channel impulse response, the proposed system realizes channel estimation at a low cost. Simulation results show that it can achieve significantly improved performance in a frequency selective fading sparse channel with fewer pilots.

Group-Sparse Channel Estimation using Bayesian Matching Pursuit for OFDM Systems

  • Liu, Yi;Mei, Wenbo;Du, Huiqian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.583-599
    • /
    • 2015
  • We apply the Bayesian matching pursuit (BMP) algorithm to the estimation of time-frequency selective channels in orthogonal frequency division multiplexing (OFDM) systems. By exploiting prior statistics and sparse characteristics of propagation channels, the Bayesian method provides a more accurate and efficient detection of the channel status information (CSI) than do conventional sparse channel estimation methods that are based on compressive sensing (CS) technologies. Using a reasonable approximation of the system model and a skillfully designed pilot arrangement, the proposed estimation scheme is able to address the Doppler-induced inter-carrier interference (ICI) with a relatively low complexity. Moreover, to further reduce the computational cost of the channel estimation, we make some modifications to the BMP algorithm. The modified algorithm can make good use of the group-sparse structure of doubly selective channels and thus reconstruct the CSI more efficiently than does the original BMP algorithm, which treats the sparse signals in the conventional manner and ignores the specific structure of their sparsity patterns. Numerical results demonstrate that the proposed Bayesian estimation has a good performance over rapidly time-varying channels.

Matching Pursuit Based Sparse Multipath Channel Estimation for Multicarrier Systems (다중반송파 시스템의 정합추구 기반 희소 다중경로 채널 추정)

  • Kim, See-Hyun
    • Journal of IKEEE
    • /
    • v.16 no.3
    • /
    • pp.258-264
    • /
    • 2012
  • Although linear channel estimation for the frequency selective fading channel has been widely deployed, its accuracy depends on the number of pilots to probe the channel. Thus, it is unavoidable to employ large number of pilots to enhance the channel estimation performance, which essentially leads to the degradation of the transmission efficiency. It even does not utilize the sparseness of the multipath channel. In this paper a sparse channel estimation scheme based on the matching pursuit algorithm and a pilot assignment method, which minimizes the coherence, are proposed. The simulation results reveal that the proposed algorithm shows superior channel estimation performance with fewer pilots to the LS based ones.

Non-stationary Sparse Fading Channel Estimation for Next Generation Mobile Systems

  • Dehgan, Saadat;Ghobadi, Changiz;Nourinia, Javad;Yang, Jie;Gui, Guan;Mostafapour, Ehsan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1047-1062
    • /
    • 2018
  • In this paper the problem of massive multiple input multiple output (MIMO) channel estimation with sparsity aware adaptive algorithms for $5^{th}$ generation mobile systems is investigated. These channels are shown to be non-stationary along with being sparse. Non-stationarity is a feature that implies channel taps change with time. Up until now most of the adaptive algorithms that have been presented for channel estimation, have only considered sparsity and very few of them have been tested in non-stationary conditions. Therefore we investigate the performance of several newly proposed sparsity aware algorithms in these conditions and finally propose an enhanced version of RZA-LMS/F algorithm with variable threshold namely VT-RZA-LMS/F. The results show that this algorithm has better performance than all other algorithms for the next generation channel estimation problems, especially when the non-stationarity gets high. Overall, in this paper for the first time, we estimate a non-stationary Rayleigh fading channel with sparsity aware algorithms and show that by increasing non-stationarity, the estimation performance declines.

A Study on the Sparse Channel Estimation Technique in Underwater Acoustic Channel (수중음향채널에서 Sparse 채널 추정 기법에 관한 연구)

  • Gwun, Byung-Chul;Lee, Oi-Hyung;Kim, Ki-Man
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1061-1066
    • /
    • 2014
  • Transmission characteristics of the sound propagation is very complicate and sparse in shallow water. To increase the performance of underwater acoustic communication system, lots of channel estimation technique has been proposed. In this paper, we proposed the channel estimation based on LMS(Least Mean Square) algorithm which has faster convergence speed than conventional sparse-aware LMS algorithms. The proposed method combines $L_p$-norm LMS with soft decision process. Simulation was performed by using the sound velocity profile which acquired in real sea trial. As a result, we confirmed that the proposed method shows the improved performance and faster convergence speed than conventional methods.

A Single-Channel Speech Dereverberation Method Using Sparse Prior Imposition in Reverberation Filter Estimation (반향 필터 추정에서 성김 특성을 이용한 단일채널 음성반향제거 방법)

  • Zee, Min-Seon;Park, Hyung-Min
    • Phonetics and Speech Sciences
    • /
    • v.5 no.4
    • /
    • pp.227-232
    • /
    • 2013
  • Since a reverberation filter is generally much shorter than the corresponding dereverberation filter, a single-channel speech dereverberation method based on reverberation filter estimation has been developed to improve its performance. Unfortunately, a typical reverberation filter still requires too many coefficients to be accurately estimated using limited speech observations. In order to exploit sparseness of reverberation filter coefficients, in this paper, we present an algorithm to impose a sparse prior to the process of reverberation filter estimation. Simulation results demonstrate that the sparse prior imposition further improves performance of the speech dereverberation method based on reverberation filter estimation.

Massive MIMO Channel Estimation Algorithm Based on Weighted Compressed Sensing

  • Lv, Zhiguo;Wang, Weijing
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1083-1096
    • /
    • 2021
  • Compressed sensing-based matching pursuit algorithms can estimate the sparse channel of massive multiple input multiple-output systems with short pilot sequences. Although they have the advantages of low computational complexity and low pilot overhead, their accuracy remains insufficient. Simply multiplying the weight value and the estimated channel obtained in different iterations can only improve the accuracy of channel estimation under conditions of low signal-to-noise ratio (SNR), whereas it degrades accuracy under conditions of high SNR. To address this issue, an improved weighted matching pursuit algorithm is proposed, which obtains a suitable weight value uop by training the channel data. The step of the weight value increasing with successive iterations is calculated according to the sparsity of the channel and uop. Adjusting the weight value adaptively over the iterations can further improve the accuracy of estimation. The results of simulations conducted to evaluate the proposed algorithm show that it exhibits improved performance in terms of accuracy compared to previous methods under conditions of both high and low SNR.

Estimation of Sparse Channels in Millimeter-Wave MU-MIMO Systems

  • Hu, Anzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2102-2123
    • /
    • 2016
  • This paper considers a channel estimation scheme for millimeter-wave multiuser multiple-input multiple-output systems. According to the proposed method, parts of the beams are selected and the channel parameters are estimated according to the sparsity of channels and the orthogonality of the beams. Since the beams for each channel become distinct and the signal power increases with the increased number of antennas, the proposed approach is able to achieve good estimation performance. As a result, the sum rate can be increased in comparison with traditional approaches, and channels can be estimated with fewer pilot symbols. Numerical results verify that the proposed approach outperforms traditional approaches in cases with large numbers of antennas.

Channel estimation of OFDM System using Matching Pursuit method (Matching Pursuit 방식을 이용한 OFDM 시스템의 채널 추정)

  • Choi Jae Hwan;Lim Chae Hyun;Han Dong Seog;Yoon Dae Jung
    • Journal of Broadcast Engineering
    • /
    • v.10 no.2
    • /
    • pp.166-173
    • /
    • 2005
  • In this paper, we propose a mobile channel estimation algorithm using matching pursuit algorithm for orthogonal frequency division multiplexing (OFDM) systems. Least square (LS) algorithm, which is used as a conventional channel estimation algorithm for OFDM systems, has error probability of channel estimation affected by effects of noise. By estimating the channel of sparse type, the proposed algorithm reduces effects of noise during time intervals that multi-path signal doesn't exist. The proposed algorithm estimates a mobile receivingchannel using pilot information transmitted consequently. We compare performance of the proposed algorithm with the LS algorithm by measuring symbol error rate with 64QAM under a mobile multi-path fading channel model.