Acknowledgement
Supported by : National Natural Science Foundation of China, Nanjing University of Posts and Telecommunications
References
- J. Zhang, G. Liu, F. Zhang, L. Tian, N. Sheng, and P. Zhang, "Emerging Challenges to IMT-Advanced Channel Model," IEEE Veh. Technol. Mag., vol. 6, no. 2, pp. 92-100, 2011. https://doi.org/10.1109/MVT.2011.940800
- J. Zhang, D. Dong, Y. Liang, C. Huang, and G. Liu, "Propagation Characteristics of Wideband Relay Channels in Urban Micro-Cell Environment," IEEE Antennas Wirel. Propag. Lett., vol. 9, pp. 657-661, 2010. https://doi.org/10.1109/LAWP.2010.2054059
- J. Zhang, Y. Zhang, Y. Yu, R. Xu, Q. Zheng, and P. Zhang, "3-D MIMO : How Much Does It Meet Our Expectations Observed From Channel Measurements?," IEEE J. Sel. Areas Commun., vol. 35, no. 8, pp. 1887-1903, 2017. https://doi.org/10.1109/JSAC.2017.2710758
- J. Zhang, "The Interdisciplinary Research of Big Data and Wireless Channel: A Cluster-Nuclei Based Channel Model," China Commun., vol. 13, no. 2, pp. 14-26, 2016. https://doi.org/10.1109/CC.2016.7833457
- R. Cao, F. Gao, and X. Zhang, "An Angular Parameter Estimation Method for Incoherently Distributed Sources Via," IEEE Trans. Signal Process., vol. 64, no. 17, pp. 4493-4503, 2016. https://doi.org/10.1109/TSP.2016.2557312
- F. Gao, R. Zhang, and Y.-C. Liang, "Channel Estimation for OFDM Modulated Two-Way Relay Networks," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4443-4455, 2009. https://doi.org/10.1109/TSP.2009.2026537
- W. Ma, H. Qu, G. Gui, L. Xu, J. Zhao, and B. Chen, "Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments," J. Franklin Inst., vol. 352, no. 7, pp. 2708-2727, 2015. https://doi.org/10.1016/j.jfranklin.2015.03.039
- L. Dai, Z. Wang, and Z. Yang, "Compressive sensing based time domain synchronous OFDM transmission for vehicular communications," IEEE J. Sel. Areas Commun., vol. 31, no. 9, pp. 460-469, 2013. https://doi.org/10.1109/JSAC.2013.SUP.0513041
- L. Dai, Z. Wang, Z. Yang, G. Gui, and F. Adachi, "Reliable and energy-efficient OFDM based on structured compressive sensing," in Proc. of IEEE International Conference on Communications (ICC), Sydney, Australia, 10-14 June 2014, 2014, pp. 1-6.
- J. Kivinen, P. Suvikunnas, L. Vuokko, and P. Vainikainen, "Experimental investigations of MIMO propagation channels," IEEE Antennas Propag. Soc. Int. Symp. (IEEE Cat. No.02CH37313), vol. 3, pp. 206-209, 2002.
- J. Zhang, C. Pan, F. Pei, G. Liu, and X. Cheng, "Three-Dimensional Fading Channel Models: A Survey of Elevation Angle Research," China Commun., vol. 52, no. 6, pp. 218-226, 2014.
- G. Gui and F. Adachi, "Improved least mean square algorithm with application to adaptive sparse channel estimation," EURASIP J. Wirel. Commun. Netw., vol. 2013, no. 1, p. 204, 2013. https://doi.org/10.1186/1687-1499-2013-204
- G. Gui, W. Peng, and F. Adachi, "Sparse least mean fourth algorithm for adaptive channel estimation in low signal-to-noise ratio region," Int. J. Commun. Syst., vol. 27, no. 11, pp. 3147-3157, 2014. https://doi.org/10.1002/dac.2531
- G. Gui, L. Xu, and S. Matsushita, "Improved adaptive sparse channel estimation using mixed square/fourth error criterion," J. Franklin Inst., vol. 352, no. 10, pp. 4579-4594, 2015. https://doi.org/10.1016/j.jfranklin.2015.07.006
- Y. Li, Y. Wang, and T. Jiang, "Sparse Channel Estimation Based on a p -Norm-Like Constrained Least Mean Fourth Algorithm," in Proc. of 2015 International Conference on Wireless Communications & Signal Processing (WCSP) Nanjing, China 15-17 Oct. 2015, 2015, pp. 1-4.
- Y. Li and M. Hamamura, "Zero-attracting variable-step-size least mean square algorithms for adaptive sparse channel estimation," Int. J. Adapt. Control Signal Process., no. 9, pp. 1-18, 2015.
- C. Xiao, Y. R. Zheng, and N. C. Beaulieu, "Novel sum-of-sinusoids simulation models for rayleigh and rician fading channels," IEEE Trans. Wirel. Commun., vol. 5, no. 12, pp. 3667-3678, 2006. https://doi.org/10.1109/TWC.2006.256990
- M. F. Pop and N. C. Beaulieu, "Limitations of sum-of-sinusoids fading channel simulators," IEEE Trans. Commun., vol. 49, no. 4, pp. 699-708, 2001. https://doi.org/10.1109/26.917776
- M. Agiwal, A. Roy, and N. Saxena, "Next generation 5G wireless networks: A comprehensive survey," IEEE Commun. Surv. Tutorials, vol. 18, no. 3, pp. 1617-1655, 2016. https://doi.org/10.1109/COMST.2016.2532458
- A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. a. Uusitalo, B. Timus, and M. Fallgren, "Scenarios for 5G mobile and wireless communications: The vision of the METIS project," IEEE Commun. Mag., vol. 52, no. May, pp. 26-35, 2014.
- Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. Bhargava, "A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends," IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2181-2195, 2017. https://doi.org/10.1109/JSAC.2017.2725519
- S. Chen and J. Zhao, "The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication," IEEE Commun. Mag., vol. 52, no. May, pp. 36-43, 2014.
- J. Zhang, "The interdisciplinary research of big data and wireless channel: A cluster-nuclei based channel model," China Commun., vol. 13, no. 2, pp. 14-26, 2017.
- L. Lu, G. Li, a. L. Swindlehurst, A. Ashikhmin, and R. Zhang, "An overview of massive MIMO: Benefits and challenges," IEEE J. Sel. Top. Signal Process., vol. 8, no. 5, pp. 742-758, 2014. https://doi.org/10.1109/JSTSP.2014.2317671
- M. Wu, B. Yin, G. Wang, C. Dick, J. Cavallaro, and C. Studer, "Large-Scale MIMO Detection for 3GPP LTE: Algorithm and FPGA Implementation," IEEE J. Sel. Top. Signal Process., vol. PP, no. 99, pp. 1-1, 2014.
- C. Turan, M. S. Salman, and A. Eleyan, "A new variable step-size block LMS algorithm for a non-stationary sparse systems," in Proc. of Proceedings of 12th International Conference on Electronics Computer and Computation (ICECCO), 2015, pp. 1-4.
- Y. Chen, Y. Gu, and A. O. Hero III, "Sparse LMS for system identification," in Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing,Taipei, Taiwan, 19-24 April 2009, 2009, pp. 3125-3128.
- G. Gui and F. Adachi, "Improved least mean square algorithm with application to adaptive sparse channel estimation," Eurasip J. Wirel. Commun. Netw., vol. 2013, no. 1, 2013. doi:10.1186/1687-1499-2013-204.
- G. Gui and F. Adachi, "Sparse least mean fourth filter with zero-attracting L1-norm constraint," in Proc. of 9th International Conference on Information, Communications and Signal Processing (ICICS), Tainan, Taiwan, December 10-13, 2013, 2013, pp. 1-5.
- G. Gui and F. Adachi, "Sparse least mean fourth algorithm for adaptive channel estimation in low signal-to-noise ratio region," Int. J. Commun. Syst., vol. 27, no. 11, 2014.
- J. Liu and S. L. Grant, "Proportionate adaptive filtering for block-sparse system identification," IEEE/ACM Trans. Speech Lang. Process., vol. 24, no. 4, pp. 623-630, 2016. https://doi.org/10.1109/TASLP.2015.2499602
- Y. Li, Y. Wang, and T. Jiang, "Norm-adaption penalized least mean square/fourth algorithm for sparse channel estimation," Signal Processing, vol. 128, pp. 243-251, 2016. https://doi.org/10.1016/j.sigpro.2016.04.003
- Y. Li, Z. Jin, Y. Wang, and R. Yang, "A robust sparse adaptive filtering algorithm with a correntropy induced metric constraint for broadband multi-path channel estimation," Entropy, vol. 18, no. 10, p. 380, 2016. https://doi.org/10.3390/e18100380
- A. S. Parameter and F. Penalized, "A Soft Parameter Function Penalized Normalized Maximum Correntropy Criterion Algorithm for Sparse System Identification," Entropy, vol. 1, no. 45, pp. 1-16, 2017.
- S. Lim, "Combined LMS/F algorithm," Electroincs Lett., vol. 33, no. 6, pp. 467-468, 1997. https://doi.org/10.1049/el:19970311
- G. Gui, A. Mehbodniya, and F. Adachi, "Least mean square/fourth algorithm for adaptive sparse channel estimation," in Proc. of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), London, UK, 8-11 Sept. 2013, 2013, pp. 296-300.
Cited by
- Theoretical Performance Analysis of Sparse System Identification Using Incremental and Diffusion Strategies Over Adaptive Networks vol.109, pp.2, 2018, https://doi.org/10.1007/s11277-019-06609-2