• Title/Summary/Keyword: Spacing effect

Search Result 828, Processing Time 0.028 seconds

Studies on Competition Effect and Spatial Treatment for Soybean Genotypes (대두유전자형에 대한 간격처리와 경합효과에 관한 연구)

  • E-Hun Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.8 no.1
    • /
    • pp.69-81
    • /
    • 1970
  • 1. Four soybean varieties in pure stand and mixtures were grown in 20 competition treatments of genotypes at within-row spacings of 5, 10, 20, 40, and 80 cm and were investigated in 10 characters for different genotypes. 2. Yield, weight of 100 seeds, height, number of branches, pods per plant, and seeds per pod were highly significant for within-row spacing treatment. 3. There was no spacing treatment effect for number of nodes and days to flower. Maturity did not respond equally in four varieties for spacing effect. 4. Fruiting period was influenced by spacing treatment. Height and number of branches were increased as within-row spacings were increased. Seed yield per area was increased oppositely. 5. Difference between fertilizing and non-fertilizing treatment was not significant in this experiment. At 80 cm spacing no competition effect occurred for yield. 6. In the competition effect, Kumkang Daerip was strong competitor ani Chungbuck Back and Shelby were weak competitors. 7. The within-row spacing of uniformity in roder to increase yield per area was proved as 20 cm in this study. 8. Oil percent was increased as spacings were increased and protein percent was as spacings were decreased.

  • PDF

Lateral Behavior of Group Pile in Sand (사질토 지반에서 군말뚝의 수평거동에 관한 연구)

  • 김영수;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.117-129
    • /
    • 2000
  • This paper discusses the lateral behavior of group pile in homogeneous and non- homogeneous (two layered) soil. In the group pile, the model tests were to investigate the effects on spacing-to-diameter ratio of pile, pile array, ratio of pile spacing, constraint condition of pile tip, eccentric load and ground condition. The group efficiency and lateral deflection induced in active piles were found to be highly dependent on the spacing-to-diameter ratio of pile, number of pile. Lateral bearing capacities in the group piles of fixed tip, in the case of 6D spacing and $3\times3$ array, were 40-100% higher than those in the group pile of free tip. Based on the results obtained, a spacing-to-diameter of 6.0 seems to be large enough to eliminate the group effect for the case of relative density of 61.8% and 32.8%, and then each pile in such a case behaves essentially the same as a single pile. However, in the case of dense sand, it can be estimated that a spacing-to-diameter of 8.0 seems to be large enough to eliminate the group effect. In this study the group efficiency is illustrated in experimental function with spacing-to-diameter, S/D, relative density and number of pile. The distribution of shear force in lead row piles, in the case of 3$\times$3 array group pile, was 41.6-52.4% for 3D spacing and 34-40% for 6D spacing, respectively. The shadowing effect for the parallel direction of lateral loading appears to be more significant than the one for the perpendicular direction of lateral loading.

  • PDF

Tribological Behavior of Boundary Lubricated Sliding Surfaces Using Three Different Spacing of Surface Profiles

  • Oh, Se-Doo;Lee, Young-Ze
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1428-1434
    • /
    • 2002
  • The ball-on-disk type sliding tests with boundary lubricated steels were carried out to verify the effect of initial spacing in surface profiles on wear and scuffing. Three kinds of surface spacing, which are closely related with initial surface micro-cracks on sliding surfaces, were produced on AISI 1045 steel surfaces using different grinding and polishing processes. Frictional forces and time to scuffing were measured, and the shape and amount of wear particles were analyzed to compare the with original surface profiles. From the tests, it was confirmed that the size of wear particles are related closely to the original spacing of the surface profile. The time to failure and amount of wear were sensitive to the surface spacing. The wider surface spacing shows much longer sliding life and smaller amount of wear than the others. Time to scuffing was increased with increasing surface pro(lie spacing. The size of wear particles increased while the wear and wear rate K were decreased with an increase in surface spacing. After the sliding tests, surface cracks of inner parts of the wear track formed due to scuffing were observed and compared among the specimens having the different surface spacing.

A Study for Optimum Joint Spacing in Jointed Concrete Pavement (줄눈 콘크리트포장의 적정 줄눈간격에 대한 연구)

  • Chon, Beom-Jun;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.69-77
    • /
    • 2005
  • Joint spacing is a potent influence in increasing the long term performance of jointed concrete pavement slabs through the control of tensile stress, sealant failure and Load Transfer Efficiency (LTE). Internal Joint Spacing is an empirical and fixed method therefore this study will present the optimum joint spacing considerations depending on various climactic conditions. Calculating the optimum joint spacing eliminates random cracking due to the effect of the environmental loads such as the early behavior of drying shrinkage and heat hydration. Optimum joint spacing is calculated so as not to cause pavement distress by the deterioration of LTE by long term pavement movement. This study shows that the provisional joint spacing is 6-8m. Pavement Distress Prediction Models show that pavement distress has no effect on joint spacing of 8m.

  • PDF

A Study of Supersonic Twin Jet Impinging on a Plate (평판에 충돌하는 초음속 Twin 제트에 관한 연구)

  • Park, Soon-Yoong;Yoon, Sang-Ho;Baek, Seung-Cheol;Kwon, Soon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.508-513
    • /
    • 2003
  • Experiments are performed to investigate the detailed structure of underexpanded twin jet impinging on a perpendicular flat plate. The major parameters, such as nozzle operating pressure and nozzle spacing, are varied to create different jet flow fields resulted from the complicated interactions of the twin jets. From the surface pressure measurements and shadowgraphs taken by schlieren optical system, the jet structure is strongly dependent on the nozzle operation pressure and the spacing. The results obtained show that the closer nozzle spacing may induce to decrease the diameter of the Mach disk within the first shock cell in the underexpanded twin jet. With the increasing nozzle operating pressure and decreasing the nozzle spacing, a new shock wave appears at the entrainment region between the two jets, due to the enhancement of mixing effect of the both jets. The closer nozzle spacing makes the overall impinging pressure level higher, while severe pressure oscillation along the axis of symmetry. Furthermore it is recommended the wider spacing to obtain higher thrust under the present experimental conditions.

  • PDF

Study on the Salt Tolerance of Rice and Other Crops in Reclaimed Soil Areas (Ⅹ) Responce of Rice Population to Varying Plant Density and N Levels in Reclamined Salty Area (간척지에서 수도 및 기타작물의 내염성에 관한 연구 (제10보) 간척지에서 재식밀도와 N 수준 변동에 대한 수도개체군의 반응에 관하여)

  • 임형빈
    • Journal of Plant Biology
    • /
    • v.13 no.3
    • /
    • pp.1-16
    • /
    • 1970
  • Field studies were conducted with kusabue variety and factorial design of 12 treatments composed of 3 levels, 10 kg, 15 kg and 20 kg of N per 10 a , and 4 levels of 80, 100, 120, and 140 hills per $3.3m^2$ plot in reclaimed slaty area having an average of 0.48% salt concentration. The law of spacing effect was observed in the increase of the number of stems at any application levels of N, and the increased N application exceeding 15 kg N per 10 a did not increase the number of stems in maximum tillering stages. The light recieving efficiency of plant population was greatly reduced by close planting when compared with the effect of increased N applications in heading stage. The spacing effect on the C/F ratio was not noted but was reduced markedly by the increased N applications, accordingly the spacing effect on rough rice yields to the LAI was less than by the increase N application. Closer spacing increased the number of panicle, and non-effective stems, decreased the number of grains per panicle and panicle weight. The increased N applications also increased the number of panicle, reduced the weight of 1,000 grains and the ratio of matured grains. It was recommended to plant 100 hills per $3.3m^2$ with the application of 15 kg N per 10 a in the reclaimed salty area of Korea.

  • PDF

Effect of In-row Plant Spacing on Growth and Yield of Korean Native Allium wakegi Araki

  • Jo, Man-Hyun;Ham, In-Ki;Park, Sang-Kyu;Seo, Gwan-Seok;Han, Gyu-Heung;Woo, In-Shik
    • Plant Resources
    • /
    • v.6 no.2
    • /
    • pp.140-143
    • /
    • 2003
  • Allium wakegi Araki was grown at plant spacings of 5, 10, 15, and 20 cm to determine the effect of planting density on the growth and yield. Allium wakegi Araki plants grown at the 5 cm plant spacing had the lowest bulb diameter and bulb weight, while plants at the lowest density (20 cm spacing) had the highest bulb diameter, bulb number, bulb weight and fresh weight. In general, plants grown at narrower spacings produced significantly smaller bulb diameter and bulb weight, but resulted in the highest yields and plants per hectare and lower fresh weights per plant.

  • PDF

A Study on Blend Effect of Fuel in Flame Spread Along An One-Dimensional Droplet Array (일차원 액적 배열의 화염 퍼짐에 있어서 연료의 혼합 효과에 관한 연구)

  • Park, Jeong;Kobayashi, Hideaki;Niioka, Takashi
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.2
    • /
    • pp.1-11
    • /
    • 1998
  • Experimental investigation on flame spread of blended fuel droplet arrays has been conducted for droplet diameters of 1.0mm and 0.75mm using high-speed chemiluminescence images of OH radical. The flame spread rate is measured with blended fuel composition, droplet diameter, and droplet spacing. Flame spread is categorized into two: a continuous mode and an intermittent one. There exist a limit droplet spacing, above which flame does not spread, and a droplet spacing of maximum flame spread, which is closely related to flame diameter. It is seen that flame spread rate is mainly dependent upon the relative position of flame zone within a droplet spacing. In case of large droplet, the increase of % volume of Heptane induces the shift of limit droplet spacing to a larger spacing since volatile Heptane plays a role of an enhancer of flame spread rate. In case of small droplet, the increase of % volume of Heptane leads to the shift of limit droplet spacing to a smaller droplet spacing. This is so because of the delayed chemical reaction time by the rapid increase of mass flux of fuel vapor for small droplet.

  • PDF

Effect of Pearlite Interlamellar Spacing on Impact Toughness and Ductile-Brittle Transition Temperature of Hypoeutectoid Steels (아공석강의 충격인성 및 연성-취성 천이온도에 미치는 펄라이트 층상간격의 영향)

  • Lee, Sang-In;Kang, Jun-Young;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.417-422
    • /
    • 2015
  • In this study, low-carbon hypoeutectoid steels with different ferrite-pearlite microstructures were fabricated by varying transformation temperature. The microstructural factors such as pearlite fraction and interlamellar spacing, and cementite thickness were quantitatively measured and then Charpy impact tests conducted on the specimens in order to investigate the correlation of the microstructural factors with impact toughness and ductile-brittle transition temperature. The microstructural analysis results showed that the pearlite interlamellar spacing and cementite thickness decreases while the pearlite fraction increases as the transformation temperature decreases. Although the specimens with higher pearlite fractions have low absorbed energy, on the other hand, the absorbed energy is higher in room temperature than in low temperature. The upper-shelf energy slightly increases with decreasing the pearlite interlamellar spacing. However, the ductile-brittle transition temperature is hardly affected by the pearlite interlamellar spacing because there is an optimum interlamellar spacing dependent on lamellar ferrite and cementite thickness and because the increase in pearlite fraction and the decrease in interlamellar spacing with decreasing transformation temperature have a contradictory role on absorbed energy.

Evaluation of Pile Spacing Ratio of Stabilizing Piles for Ground Destruction Reduction at the Time of Soft Ground Excavation (연약지반 굴착시 지반파괴 저감을 위한 억지말뚝의 간격비 평가)

  • Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.47-56
    • /
    • 2016
  • In the case of excavating ground backfilled with soft ground, ground destruction occurs owing to the discharge of groundwater from excavated back ground in spite of earth retaining wall. To minimize this, indoor model test was implemented applying stabilizing pile as a solution for ground destruction. The unreinforced case was compared with the reinforced case and the comparison demonstrated that the ratio of the gap in settlement of the two cases is about three to one, which proves the reinforcement effect (Kim, 2014). This study has carried out the evaluation of appropriate pile spacing ratio, according to the confirmed effect of stabilizing pile. In the evaluation test the case with pile spacing ratio of 0.66 (5 stabilizing piles) was compared with that of 0.76 (3 stabilizing piles), and it has been shown that applying stabilizing pile has effect on ground destruction reduction, but may rather work as load when pile spacing ratio is narrower than a certain interval. So it was found that adjustment for appropriate pile spacing ratio is required at the stage of design. This study has shown that the pile spacing ratio is appropriate at around 0.7~0.8, which reduces ground destruction and does not function as the load of excavated back ground.