• Title/Summary/Keyword: Spacer Grid Spring

Search Result 39, Processing Time 0.024 seconds

PERFORMANCE EVALUATION OF NEW SPACER GRID SHAPES FOR PWRS

  • Song, Kee-Nam;Lee, Soo-Bum;Lee, Sang-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.737-746
    • /
    • 2007
  • A spacer grid, which is one of the most important structural components in a PWR fuel assembly, supports its fuel rods laterally and vertically. Based on in-house design experience, scrutiny of the design features of advanced nuclear fuels and the patents of other spacer grids, KAERI has devised its own spacer grid shapes and acquired patents. In this study, a performance evaluation of KAERI's spacer grid shapes was carried out from mechanical/structural and thermohydraulic view points. A comparative performance evaluation of commercial spacer grid shapes was also carried out. The comparisons addressed the spring characteristics, fuel rod vibration characteristics, fretting wear resistance, impact strength characteristics, CHF enhancement, and the pressure drop level of the spacer grid shapes. The results show that the performances of KAERI's spacer grid shapes are as good as or better than those of the commercial spacer grid shapes.

Shape Modification for Decreasing the Spring Stiffness of Double-plated Nozzle Type Spacer Grid Spring (이중판 노즐형 지지격자 스프링의 지지 강성감소를 위한 형상 개선)

  • Kang, H.S.;Song, K.N.;Lee, J.H.;Lee, K.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.400-405
    • /
    • 2001
  • Nozzle of the double-plated grid plays the role of the spring to support a fuel rod as well as to provide the coolant path in grid. The nozzle was known to be necessary to reduce the spring stiffness for supporting performance. In this study the contact analysis between the fuel rod and the nozzle type spacer grid was performed by using ABAQUS standard to propose the preferable shape in tenn of spring performance. Two small cuts at the upper and lower part of the nozzle appeared to have a minor effect in decreasing the nozzle stiffness. A long slot at the center of the nozzle was turned out not only to decrease the spring constant as desired but also to increase the elastic displacement.

  • PDF

Optimization of a Nuclear Fuel Spacer Grid Spring Using Homology (호몰로지 설계를 이용한 원자로 핵연료봉 지지격자 스프링의 최적설계)

  • Lee Jae-Jun;Song Ki-Nam;Park Gyung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.828-835
    • /
    • 2006
  • Spacer grid springs support the fuel rods in a nuclear fuel system. The spacer grid is a part of a fuel assembly. Since a spring has repeated contacts with the fuel rod, fretting wear occurs on the surface of the spring. Design is usually performed to reduce the wear. The conceptual design process for the spring is defined by using the Independence of axiomatic design and the design is carried out based on the direction that the design matrix indicates. For detailed design an optimization problem is formulated. In optimization, homologous design is employed to reduce fretting wear. The deformation of a structure is called homologous if a given geometrical relationship holds for a given number of structural points before, during, and after the deformation. In this case, the deformed shape of the spring should be the same as that of the fuel rod. 1bis condition is transformed to a function and considered as a constraint in the optimization process. The objective function is minimizing the maximum stress to allow a local plastic deformation. Optimization results show that the contact occurs in a wide range. Also, the results are verified by nonlinear finite element analysis.

  • PDF

Performance Test on the KAERI Designed Spacer Grids for the Advanced PWR (경수로용 고유 지지격자의 성능시험)

  • Song, Gi-Nam;Yun, Gyeong-Ho;Gang, Heung-Seok;Kim, Hyeong-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.431-437
    • /
    • 2003
  • KAERI has contrived 14 kinds of spacer grid shapes of its own since 1997 and applied for Korean and US patents. To date. KAERI has obtained US and Korean patents for 6 kinds of spacer grid shapes among them. Tn this study. performance test on two spacer grid shapes that are assumed to be the most effective candidates for the spacer grid of the next generation nuclear fuel in Korea was carried Qui through the mechanical/structural test and analysis. The test result has shown thai the performances of the candidates are better or not worse than that of the current spacer grid.

  • PDF

Mechanical/Structural Performance Analysis and Test on the KAERI Designed Spacer Grids for the PWR (한국원자력연구소에서 개발한 가압경수로용 핵연료 지지격자의 기계/구조적 성능 해석 및 시험)

  • Song, K.N.;Yoon, K.H.;Kang, H.S.;Choe, Myeong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1297-1302
    • /
    • 2003
  • KAERI has contrived 15 kinds of spacer grid shapes of its own since 1997 and applied for domestic and foreign patents. To date, KAERI has obtained US and ROK patents for 6 kinds of spacer grid shapes among them and the others are under review in USA, EC, China, and ROK. In this study, mechanical/structural performance analysis and test on two spacer grid shapes that are assumed to be the most effective candidates for the spacer grid of the next generation nuclear fuel in Korea was carried out. The result has shown that the performances of the candidates are better or not worse than those of the current spacer grid.

  • PDF

Performance Analysis and Test on the KAERI Designed Spacer Grids for the PWR (한국원자력연구소에서 개발한 가압경수로용 핵연료 지지격자의 성능 해석 및 시험)

  • Song, K.N.;Yoon, K.H.;Kang, H.S.;Choi, M.H.;Chun, T.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.432-437
    • /
    • 2004
  • KAERI has contrived 16 kinds of spacer grid shapes of its own since 1997 and applied for domestic and foreign patents. To date, KAERI has obtained US and ROK patents for 11 kinds of spacer grid shapes among them and the others are under review in USA, EC, China, and ROK. In this study, detailed performance analysis and test on two spacer grid shapes that are assumed to be the most effective candidates for the spacer grid of the next generation nuclear fuel in Korea was carried out. The result has shown that the performances of the candidates are better or not worse than those of the current spacer grid.

  • PDF

Vibration Characteristics of a Dummy Fuel Rod Supported by Spacer Grids (지지격자로 지지된 모의 연료봉의 진동특성)

  • Choi, Myoung-Hwan;Kang, Heung-Seok;Yoon, Kyung-Ho;Kim, Hyung-Kyu;Song, Kee-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.424-431
    • /
    • 2003
  • The spacer grid is one of the main structural components in the fuel assembly, which supports the fuel rods and maintains coolable geometry from an external load. A vibration test and a finite element analysis using ABAQUS on a dummy fuel rod continuously supported by Optimized H type(OHT) and New Doublet (ND) spacer grids arc performed to obtain the vibration characteristics such as natural frequencies and mode shapes an(1 to verify a finite element model. The results from the test and the finite element analysis are compared by modal assurance criteria (MAC) values. It is resulted that MACs for the first, the third and the fifth mode shapes are relatively good as compared with those of the second an(1 fourth ones. The natural frequency differences between two methods as well as the mode comparison results for the rod with OHT spacer grid are better than those with ND spacer grid. It is judged that the FE model for the ND spacer grid spring should be modified to consider the long contact length which actually happen when the spring supports the rod.

Structural Design Considerations on the Spacer Grid Assembly of PWR Nuclear Fuel (경수로 핵연료 지지격자체 구조설계에 대한 소고)

  • Song, Kee-nam
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.54-60
    • /
    • 2011
  • A spacer grid, which supports nuclear fuel rods laterally and vertically with a friction grip, is one of the most important structural components in a PWR fuel. The form of grid strap and supporting parts such as grid spring and dimple is known to be closely related with the mechanical/structural performance of spacer grid and nuclear fuel assembly. In this study, reviewing various research results for enhancing the performance of the spacer grid, some structural design considerations and research directions on the spacer grid assembly are suggested for further study.

ANALYSIS OF THE OPTIMIZED H TYPE GRID SPRING BY A CHARACTERIZATION TEST AND THE FINITE ELEMENT METHOD UNDER THE IN-GRID BOUNDARY CONDITION

  • Yoon Kyung-Ho;Lee Kang-Hee;Kang Heung-Seok;Song Kee-Nam
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.375-382
    • /
    • 2006
  • Characterization tests (load vs. displacement curve) are conducted for the springs of Zirconium alloy spacer grids for an advanced LWR fuel assembly. Twofold testing is employed: strap-based and assembly-based tests. The assembly-based test satisfies the in situ boundary conditions of the spring within the grid assembly. The aim of the characterization test via the aforementioned two methods is to establish an appropriate assembly-based test method that fulfills the actual boundary conditions. A characterization test under the spacer grid assembly boundary condition is also conducted to investigate the actual behavior of the spring in the core. The stiffness of the characteristic curve is smaller than that of the strap-wised boundary condition. This phenomenon may cause the strap slit condition. A spacer grid consists of horizontal and vertical straps. The strap slit positions are differentiated from each other. They affords examination of the variation of the external load distribution in the grid spring. Localized legions of high stress and their values are analyzed, as they may be affected by the spring shape. Through a comparison of the results of the test and FE analysis, it is concluded that the present assembly-based analysis model and procedure are reasonably well conducted and can be used for spring characterization in the core. Guidelines for improving the mechanical integrity of the spring are also discussed.

Nonlinear Response Structural Optimization of a Spacer Grid Spring for a Nuclear Fuel Rod Using the Equivalent Loads (등가하중을 이용한 원자로 핵연료봉 지지격자 스프링의 비선형 응답 구조 최적설계)

  • Kim, Do-Won;Lee, Hyun-Ah;Song, Ki-Nam;Kim, Yong-ll;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1165-1172
    • /
    • 2007
  • The spacer grid set is a part of a nuclear fuel assembly. The set has a spring and the spring supports the fuel rods safely. Although material nonlinearity is involved in the deformation of the spring, nonlinearity has not been considered in design of the spring. Recently a nonlinear response structural optimization method has been developed using equivalent loads. It is called nonlinear response optimization equivalent loads (NROEL). In NROEL, the external loads are transformed to the equivalent loads (EL) for linear static analysis and linear response optimization is carried out based on the EL in a cyclic manner until the convergence criteria are satisfied. EL is the load set which generates the same response field of linear analysis as that of nonlinear analysis. Shape optimization of the spring is carried out based on EL. The objective function is defined by minimizing the maximum stress in the spring while mass is limited and the support force of the spring is larger than a certain value. The results are verified by nonlinear response analysis. ABAQUS is used for nonlinear response analysis and GENESIS is employed for linear response optimization.