• Title/Summary/Keyword: Space-time block coding

Search Result 115, Processing Time 0.028 seconds

Polar coded cooperative with Plotkin construction and quasi-uniform puncturing based on MIMO antennas in half duplex wireless relay network

  • Jiangli Zeng;Sanya Liu
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.175-183
    • /
    • 2024
  • Recently, polar code has attracted the attention of many scholars and has been developed as a code technology in coded-cooperative communication. We propose a polar code scheme based on Plotkin structure and quasi-uniform punching (PC-QUP). Then we apply the PC-QUP to coded-cooperative scenario and built to a new coded-cooperative scheme, which is called PCC-QUP scheme. The coded-cooperative scheme based on polar code is studied on the aspects of codeword construction and performance optimization. Further, we apply the proposed schemes to space-time block coding (STBC) to explore the performance of the scheme. Monte Carlo simulation results show that the proposed cooperative PCC-QUP-STBC scheme can obtain a lower bit error ratio (BER) than its corresponding noncooperative scheme.

An Efficient Cooperative Diversity Scheme for Mobile Satellite Broadcasting Services (휴대형 이동위성방송 서비스를 위한 효율적인 협동 다이버시터 기법)

  • Kim, Soo-Young;Kim, Hee-Wook;Park, Un-Hee;Ahn, Do-Seob
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3A
    • /
    • pp.258-264
    • /
    • 2009
  • In this paper, we propose an efficient cooperative diversity scheme for mobile satellite multimedia broadcasting services. The proposed scheme is a transmit diversity technique to adapt time varying channel conditions, and we do not need any channel quality information from the return link. In the proposed scheme, we utilize space-time block coding (STBC) and rate compatible turbo codes in order to realize the transmit diversity for the mobile satellite system with several repeaters. The satellite and several repeaters operate in unison to send the encoded signals, so that the receiver may realize diversity gain. The simulation results demonstrate that the proposed scheme can provide highly improved performance.

Distributed Quasi-Orthogonal Space-Time Block Code for Four Transmit Antennas with Information Exchange Error Mitigation

  • Tseng, Shu-Ming;Wang, Shih-Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2411-2429
    • /
    • 2013
  • In this paper, we extend the case of information exchange error mitigation for the distributed orthogonal space-time block code (DOSTBC) for two transmit antennas to distributed quasi-orthogonal space-time block code (DQOSTBC) for four transmit antennas. A rate 1 full-diversity DQOSTBC for four transmit antennas is designed. The code matrix changes according to different information exchange error cases, so full diversity is maintained even if not all information exchange is correct. We also perform analysis of the pairwise error probability. The performance analysis indicates that the proposed rate 1 DQOSTBC outperforms rate 1/2 DOSTBC for four transmit antennas at the same transmission rate, which is confirmed by the simulation results.

Quasi-Orthogonal Space-Time Block Codes Designs Based on Jacket Transform

  • Song, Wei;Lee, Moon-Ho;Matalgah, Mustafa M.;Guo, Ying
    • Journal of Communications and Networks
    • /
    • v.12 no.3
    • /
    • pp.240-245
    • /
    • 2010
  • Jacket matrices, motivated by the complex Hadamard matrix, have played important roles in signal processing, communications, image compression, cryptography, etc. In this paper, we suggest a novel approach to design a simple class of space-time block codes (STBCs) to reduce its peak-to-average power ratio. The proposed code provides coding gain due to the characteristics of the complex Hadamard matrix, which is a special case of Jacket matrices. Also, it can achieve full rate and full diversity with the simple decoding. Simulations show the good performance of the proposed codes in terms of symbol error rate. For generality, a kind of quasi-orthogonal STBC may be similarly designed with the improved performance.

Performance Improvement of Space-Time OFDM System with Concatenated Codes (연접부호를 적용한 시공간 OFDM 시스템의 성능 개선)

  • 서완우;정연호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.541-546
    • /
    • 2004
  • Space-Time Coding(STC) is a technique that utilizes joint correlation of transmitted signals in both time and space domains. Through this approach, diversity and coding gains can be simultaneously obtained. In this paper, we use SPW simulation tool to implement the IEEE 802.11a system. Based on this system, OFDM system with STC and convolutional coder concatenated is implemented. The system performance is analyzed and compared with the performance of the IEEE 802.11a system. The simulation results show that the performance with concatenated codes at a data rate of 6Mbps shows approximately a 5dB gain over the system with the convolutional code only. At a data rate of 12Mbps, the performance with concatenated codes is further improved by approximately 6dB.

Soft Decision Detection Method for Turbo-coded STBC Using High-order Modulation Schemes (고차원 변조 방식에서의 터보 부호화된 시공간 블록 부호 기술을 위한 최적의 연판정 검출 방법)

  • Kim, Young-Min;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6C
    • /
    • pp.562-571
    • /
    • 2010
  • Forward error correction (FEC) coding schemes using iterative soft decision detection (SDD) information are mandatory in most of the next generation wireless communication system, in order to combat inevitable channel imparirnents. At the same time, space-time block coding (STBC) schemes are used for the diversity gain. Therefore, SDD information has to be fed into FEC decoder. In this paper, we propose efficient SDD methods for turbo-coded STBC system using high order modulation such as QAM. We present simulation results of various SDD schemes for turbo-coded STBC systems, and show that the proposed methods can provide almost approximating performance to maximum likelihood detection with much less computational load.

Block-Ordered Layered Detector for MIMO-STBC Combined with Transmit and Receive Eigen-Beamformers (MIMO-STBC를 위한 송수신 고유빔 형성기를 이용한 블록순 계층적 검파기)

  • 이원철;김홍철
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.10
    • /
    • pp.17-26
    • /
    • 2004
  • This paper proposes JBSTBC (Joint Beamforming Space-Time Block Coding) scheme for MIMO (Multi-Input Multi-Output) communication systems. To enhance the order of spatial diversity in presence of deteriorative fading correlations as well as inter-substream interferences, the proposed JBSTBC method employs joint eigen-beamforming technique together with the BOLD (block-ordered layered detector) for MIMO-STBC. In order to confirm superiority of the proposed JBSTBC method, the computer simulations are conducted in highly correlated fading situations with providing detailed mathematical derivations for clarifying functionality of the proposed scheme.

Design of new space-time block codes using 3 transmit antennas (3개 송신안테나를 사용한 새로운 시공간블록부호 설계)

  • Jung Tae-jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.617-623
    • /
    • 2005
  • In this paper, new space-time block codes achieving full rate and full diversity for QAM and quasi-static Rayleigh fading channels when using 3 transmit antennas are proposed. These codes are constructed by serially concatenating the constellation rotating precoders with the Alamouti scheme like the conventional A-ST-CR code Computer simulations show that all of the proposed codes achieve the coding gains greater than the existing ST-CR code, in which the best has approximately 1.5dB and 3dB larger coding gains than the ST-CR code for QPSK and 16-QAM, respectively, at average SER= 10$^{-5}$.

Fast Binary Block Inverse Jacket Transform

  • Lee Moon-Ho;Zhang Xiao-Dong;Pokhrel Subash Shree;Choe Chang-Hui;Hwang Gi-Yean
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.4
    • /
    • pp.244-252
    • /
    • 2006
  • A block Jacket transform and. its block inverse Jacket transformn have recently been reported in the paper 'Fast block inverse Jacket transform'. But the multiplication of the block Jacket transform and the corresponding block inverse Jacket transform is not equal to the identity transform, which does not conform to the mathematical rule. In this paper, new binary block Jacket transforms and the corresponding binary block inverse Jacket transforms of orders $N=2^k,\;3^k\;and\;5^k$ for integer values k are proposed and the mathematical proofs are also presented. With the aid of the Kronecker product of the lower order Jacket matrix and the identity matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse, fast algorithm and prime based $P^k$ order of proposed binary block inverse Jacket transform, it can be applied in communications such as space time block code design, signal processing, LDPC coding and information theory. Application of circular permutation matrix(CPM) binary low density quasi block Jacket matrix is also introduced in this paper which is useful in coding theory.

A New Controller for Improvement of Response Time by Data Compression Using Color Space Conversion

  • Koo, Sung-Jo;Kim, Chang-Gon;An, Jong-Ki;Park, Man-Hyo;Yeo, Sang-Deog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.863-864
    • /
    • 2005
  • In recent years, we use overdriving scheme to improve the response time of the liquid crystal. Since conventional overdriving scheme uses memory to perform ideal processing, it is desired to reduce system cost by decreasing the data stored in these SDRAMs. As a general compression method, quantization, sub-sampling and Block Truncation Coding ( BTC ) are used, which process data in block base and cause block effect. So we proposed new data compression method by color space conversion. Because this method compresses luminance and chrominance signal by different ratio, it can efficiently reduce error of block effect in decompression image.

  • PDF