• Title/Summary/Keyword: Space harmonic analysis method

Search Result 90, Processing Time 0.029 seconds

Application of Store Separation Wind Tunnel Test Technique into CFD (외장분리 풍동시험 기법의 전산유체해석 적용)

  • Son, Chang-Hyeon;Kim, Sang-Hun;Woo, Heekyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.263-272
    • /
    • 2021
  • In this study, aerodynamic coefficients obtained from Computational Fluid Dynamics (CFD) using wind tunnel test-like method is compared with coefficients obtained by actual wind tunnel test. Unsteady analysis has performed with using harmonic equation for motion of the external store. Aerodynamic database is generated based on CFD results to simulate 6 degree-of-freedom store separation analysis. Trajectory is obtained from simulation using both CFD-based and test-based database, and results are compared with trajectory from flight test result. It is concluded that generation of database based on CFD with wind tunnel test technique is valid from good agreement of the trajectory.

Analysis of Half-coiled Short-pitch Windings with Different Phase Belt for Multiphase Bearingless Motor

  • Li, Bingnan;Huang, Jin;Kong, Wubin;Zhao, Lihang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.162-169
    • /
    • 2014
  • The analysis and comparation of the half-coiled short-pitch windings with different phase belt are presented in the paper. The half-coiled short-pitch windings can supply the odd and even harmonics simultaneously, which can be applied in multiphase bearingless motor (MBLM). The space harmonic distribution of the half-coiled short-pitch windings with two kinds of phase belt is studied wi th respect to different coil pitch, and the suitable coil pitch can be selected from the analysis results to reduce the additional radial force and torque pulse. The two kinds of half-coiled short-pitch windings are applied to the five- and six-phase bearingless motor, and the comparation from the Finite Element Method (FEM) results shows that the winding with $2{\pi}/m$ phase belt is fit for the five phase bearingless motor and the winding with ${\pi}/m$ phase belt is suitable for the six phase bearingless motor. Finally, a five phase surface-mounted permanent magnet (PM) bearingless motor is built and the experimental results are presented to verify the validity and feasibility of the analysis. The results presented in this paper will give useful guidelines for design optimization of the MBLM.

Computer Simulation on the Poling Mechanism for the Control of 2nd Order Optical Nonlinearity in Silica Glass (2차 비선형 광특성의 제어를 위한 실리카 유리의 전기분극 기구 전산모사)

  • Yu, Ung-Hyeon;Lee, Seung-Gyu;Sin, Dong-Uk;Jeong, Yong-Jae
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.207-214
    • /
    • 2001
  • Silica glass is a core material for optical fiber in optical telecommunications, but its centrosymmetry eliminates the second order nonlinearity. But it is experimentally well known that the space charge polarization induces the Second Harmonic Generation (SHG) when a strong DC voltage is applied to silica glass for a long period of time with metal blocking electrodes. In this report, the results of a theoretical calculation of the nonlinear optical property caused by the space charge polarization, and a model of a numerical analysis to predict the small chance in nonlinear optical property as functions of time and space are provided. Assuming that amorphous silica is a solid state electrolyte and sodium ion is the only mobile charge carrier, 'Finite Difference Method' was employed for modeling of numerical analysis. The distributions of the concentration of sodium ion and electric field as functions of a normalized length of the specimen and a normalized applied voltage were simulated.

  • PDF

Study of Winding Method to Reduce Stray Loss and Stator Core Vibration of Synchronous Machine

  • Hiramatsu, Daisuke;Sutrisna, Kadek Fendy;Ishizuka, Hiroaki;Okubo, Masashi;Tsujikawa, Kazuma;Ueda, Takashi;Hachiya, Hideyuki;Mori, Junji;Aso, Toshiyuki;Otaka, Toru
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.313-320
    • /
    • 2013
  • The fractional slot windings are widely used in rotating machine in order to increase the flexibility of design and improve the voltage waveform. However, the MMF wave of fractional-slot windings are found to contain unique harmonic component, which are designated as even order space flux harmonics, fractional number flux harmonics, or both. They may cause stray loss and stator core vibration. This paper proposes new winding methods "novel interspersed windings" and "expanded group windings" to reduce these harmonics. The advantages of two proposed windings are verified by using numerical analysis and measurement test of winding model.

Analysis on the Helical Motion PM Motor with Cylindrical Halbach Array (원통형 Halbach 배열을 갖는 나선운동을 하는 2자유도 영구자석 전동기의 특성해석)

  • Jang Seok Myeong;Choi Jang Young;Lee Sung Ho;Seo Jeong Chul;Park Ji Hoon
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1061-1063
    • /
    • 2004
  • This paper deals with the application of cylindrical Halbach array to a PM motor capable of producing pure rotary motion, pure linear motion, or helical motion, The proposed motor consists of an exterior polar Halbach array for a rotary motion and interior cylindrical Halbach array for a linear one. The two- dimensional space harmonic method is employed for predicting the electromagnetic characteristics, with reference to the following parameters as variables: magnetic field, torque/thrust and back emf.

  • PDF

Dynamic Boundary Element Analysis of Underground Structures Using Multi-Layered Half-Plane Fundamental Solutions (2차원 다층 반무한해를 이용한 지하구조계의 동적 경계요소 해석)

  • 김문겸;이종우;조성용
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.4
    • /
    • pp.59-68
    • /
    • 1997
  • In analysis of underground structures, the effects of artificial boundary conditions are considered as one of the major reasons for differences from experimental results. These phenomena can be overcome by using the boundary elements which satisfy the multi-layered half space conditions. The fundamental solutions of multi-layered half-space for boundary element method is formulated satisfying the transmission and reflection of waves at each layer interface and radiation conditions at bottom layer. The governing equations can be obtained from the displacements at each layer which are expressed in terms of harmonic functions. All types of waves can be included using the complete response from semi-infinite integrals with respect to horizontal wavenumbers using expansion of Fourier series and Hankel transformation. Two dimensional Green's functions are derived from cylindrical Navier equations and potentials performing infinite integration in y-direction. In this case, it is effective to transform into two dimensional problem using semi-analytical integration and sinusoidal Bessel function. Some verifications are given to show the accuracy and efficiency of the developed method, and numerical examples to demonstrate the dynamic behavior of underground with various properties.

  • PDF

Voltage Source Equipment for the Grid Fault Testing and Analysis of Total Harmonic Distortion According to PWM Methods

  • Gwon, Jin-Su;Kim, Chun-Sung;Kang, Dae-Wook;Park, Jung-Woo;Kim, Sungshin
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1081-1092
    • /
    • 2014
  • Renewable energy is being spotlighted as the electric power generating source for the next generation. Due to an increase in renewable energy systems in the grid system, their impact on the grid has become non-negligible. Thus, many countries in the world, including Europe, present their own grid codes for grid power conversion devices. In order to experiment with these grid codes, grid fault test equipment is required. This paper proposes both equipment and a control method, which are constructed with a 7-level cascaded H-bridge converter, that are capable of generating various grid faults. In addition, the Pulse Width Modulation (PWM) method for multilevel converters is compared and analyzed. The proposed structure, the control method, and the PWM method are verified through simulation and experimental results.

Fault Diagnosis of High-Speed Rotating Machinery With Control Moment Gyro for Medium and Large Satellite Using Envelope Spectrum Analysis (포락선 스펙트럼 분석을 이용한 중대형 위성용 제어모멘트자이로의 고속회전체 고장진단)

  • Kang, Jeong-Min;Song, Tae-Seong;Lee, Jong-Kuk;Song, Deok-Ki;Kwon, Jun-Beom;Lee, Il;Seo, Joong-Bo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.413-422
    • /
    • 2022
  • In this paper, the fault analysis of the momentum wheel, which is a high-speed rotary machinery of 'Control Moment Gyro' for medium and large satellite, was described. For fault diagnosis, envelope spectrum analysis was performed using Hilbert transformation method and signal demodulation method to find the impact signals periodically generated from amplitude modulated signals. Through this, the fault of the momentum wheel was diagnosed by analyzing whether there was a harmonic component of the rotational frequency and a bearing fault frequency in a specific frequency band with a high peak.

On Mode Correlation of Solar Acoustic Oscillations

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.3
    • /
    • pp.287-294
    • /
    • 2009
  • In helioseismology it is normally assumed that p-mode oscillations are excited in a statistically independent fashion. Unfortunately, however, this issue is not clearly settled down in that two experiments exist, which apparently look in discrepancy. That is, Appourchaux et al. (2000) looked at bin-to-bin correlation and found no evidence that the assumption is invalid. On the other hand, Roth (2001) reported that p-mode pairs with nearby frequencies tend to be anti-correlated, possibly by a mode-coupling effect. This work is motivated by an idea that one may test if there exists an excess of anticorrelated power variations of pairs of solar p-modes. We have analyzed a 72-day MDI spherical-harmonic time series to examine temporal variations of p-mode power and their correlation. The power variation is computed by a running-window method after the previous study by Roth (2001), and then distribution function of power correlation between mode pairs is produced. We have confirmed Roth's result that there is an excess of anti-correlated p-mode pairs with nearby frequencies. On the other hand, the amount of excess was somewhat smaller than the previous study. Moreover, the distribution function does not exhibit significant change when we paired modes with non-nearby frequencies, implying that the excess is not due to mode coupling. We conclude that the origin of this excess of anticorrelations may not be a solar physical process, by pointing out the possibility of statistical bias playing the central role in producing the excess.

Beating phenomena in spacecraft sine testing and an attempt to include the sine sweep rate effect in the test-prediction

  • Nali, Pietro;Bettacchioli, Alain
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.2
    • /
    • pp.197-209
    • /
    • 2016
  • The Spacecraft (S/C) numerical sine test-predictions are usually performed through Finite Element Method (FEM) Frequency Response Analysis (FRA), that is the hypothesis of steady-state responses to harmonic excitation to the S/C base is made. In the test practice, the responses are transient and may be significantly different from those predicted through FRA. One of the most significant causes of discrepancy between prediction and test consists in the beating phenomena. After a brief overview of the topic, the typical causes of beating are described in the first part of the paper. Subsequently, focus is made on the sine sweep rate effect, which often leads to have beatings after the resonance of weakly damped modes. In this work, the approach illustrated in the literature for calculating the sine sweep rate effect in the case of Single-Degree-Of-Freedom (SDOF) oscillators is extended to Multi-Degrees-Of-Freedom (MDOF) systems, with the aim of increasing the accuracy of the numerical sine test-predictions. Assumptions and limitations of the proposed methodology are detailed along the paper. Several assessments with test results are discussed and commented.