• Title/Summary/Keyword: Space formation

Search Result 1,639, Processing Time 0.027 seconds

Determination of Initial Conditions for Tetrahedral Satellite Formation

  • Yoo, Sung-Moon;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.285-290
    • /
    • 2011
  • This paper presents an algorithm that can provide initial conditions for formation flying at the beginning of a region of interest to maximize scientific mission goals in the case of a tetrahedral satellite formation. The performance measure is to maximize the quality factor that affects scientific measurement performance. Several path constraints and periodicity conditions at the beginning of the region of interest are identified. The optimization problem is solved numerically using a direct transcription method. Our numerical results indicate that there exist an optimal configuration and states of a tetrahedral satellite formation. Furthermore, the initial states and algorithm presented here may be used for reconfiguration maneuvers and fuel balancing problems.

Formation Flying of small Satellites Using Coulomb Force

  • Lee, Dong-Hun;Lee, Hyun-Jae;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.84-90
    • /
    • 2006
  • The formation flying of satellites has been identified as an enabling technology for many future space missions. The application of conventional thrusters for formation flying usually results in high cost, limited life-time, and a large weight penalty. Various methods including the use of coulomb forces have been considered as an alternative to the conventional thrusters. In the present investigation, we investigate the feasibility of achieving the desired formation using Coulomb forces. This method has several advantages including low cost, light weight and no contamination. A simple controller based on the relative position and velocity errors between the leader and follower satellites is developed. The proposed controller is applied to circular formations considering the effects of disturbances in initial formation conditions as well as system nonlinearity. Results of the numerical simulation state that the proposed controller is successful in establishing circular formations of leader and follower satellites, for a formation size below 100 m.

A Study on Service Program and Space Formation of Welfare Centers for Elderly People - Focusing on welfare centers for elderly people in Gwangju - (노인복지회관의 서비스 프로그램과 공간구성에 관한 연구 - 광주광역시 노인복지회관을 중심으로 -)

  • You, Yen-Young;Kim, Moon-Duck
    • Korean Institute of Interior Design Journal
    • /
    • v.13 no.6
    • /
    • pp.3-11
    • /
    • 2004
  • In the 21st Century, our society is facing decrease of general population and beginning of aging society due to low birth rate, and such issues are increasing the elderly population. Especially in Korea, the elderly population exceeded 7% of the total population in 2000, making its way to the aging society and the elderly population will increase up to 14% by 2019, becoming the true aging society. Unlike other countries, aging in Korea is happening very fast and this requires the society's preparation and plans to deal with the problem. This study was started with the problem that the welfare centers for elderly people in Gwangju do not have the space plan adequate for the regional characteristics and users' demands. Therefore, this study performed an investigation and analysis on service programs, management, and space formation of S welfare centers for elderly people in Gwangju. This study produced a figure after interviews with social welfare workers and surveys. And then this study investigated size and formation of space for the service programs in each welfare center This study showed the current status of welfare centers for elderly people and difference in size and formation of space related to the service programs of the region. Therefore, this study was done to provide the basic data for the space formation of new welfare centers.

Trajectory Planning of Satellite Formation Flying using Nonlinear Programming and Collocation

  • Lim, Hyung-Chu;Bang, Hyo-Choong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.361-374
    • /
    • 2008
  • Recently, satellite formation flying has been a topic of significant research interest in aerospace society because it provides potential benefits compared to a large spacecraft. Some techniques have been proposed to design optimal formation trajectories minimizing fuel consumption in the process of formation configuration or reconfiguration. In this study, a method is introduced to build fuel-optimal trajectories minimizing a cost function that combines the total fuel consumption of all satellites and assignment of fuel consumption rate for each satellite. This approach is based on collocation and nonlinear programming to solve constraints for collision avoidance and the final configuration. New constraints of nonlinear equality or inequality are derived for final configuration, and nonlinear inequality constraints are established for collision avoidance. The final configuration constraints are that three or more satellites should form a projected circular orbit and make an equilateral polygon in the horizontal plane. Example scenarios, including these constraints and the cost function, are simulated by the method to generate optimal trajectories for the formation configuration and reconfiguration of multiple satellites.

The Evolution of the Mass-Metallicity Relation at 0.20 < z < 0.35

  • Chung, Jiwon;Rey, Soo-Chang;Sung, Eon-Chang
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.59-67
    • /
    • 2013
  • We present a spectroscopic study of 343 blue compact galaxies (BCGs) at 0.20 < z < 0.35 from the Sloan Digital Sky Survey (SDSS) DR7 data. We derive gas phase oxygen abundance using the empirical and direct method. Stellar masses of galaxies are derived from the STARLIGHT code. We also derive star formation rates of galaxies based on $H{\alpha}$ emission line from the SDSS as well as far-ultraviolet (FUV) flux from the Galaxy Evolution Explorer GR6 data. Evolution of the luminosity-metallicity and mass-metallicity (M-Z) relations with redshift is observed. At a given luminosity and mass, galaxies at higher redshifts appear to be biased to low metallicities relative to the lower redshift counterparts. Furthermore, low mass galaxies show higher specific star formation rates (SSFRs) than more massive ones and galaxies at higher redshifts are biased to higher SSFRs compared to the lower redshift sample. By visual inspection of the SDSS images, we classify galaxy morphology into disturbed or undisturbed. In the M-Z relation, we find a hint that morphologically disturbed BCGs appear to exhibit low metallicities and high SSFRs compared to undisturbed counterparts. We suggest that our results support downsizing galaxy formation scenario and star formation histories of BCGs are closely related with their morphologies.

Formation Geometry Center based Formation Controller Design using Lyapunov Stability Theorem

  • Lee, Ji-Eun;Kim, Hyeong-Seok;Kim, You-Dan;Han, KiHoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.71-78
    • /
    • 2008
  • New formation flight controller for unmanned aerial vehicles is proposed. A behavioral decentralized control approach called formation geometry center control is adopted. Trajectory tracking as well as formation geometry keeping are the purpose of the formation flight, and therefore two controllers are designed: a trajectory tracking controller for reference trajectory tracking, and a position controller for formation geometry keeping. Each controller is designed using Lyapunov stability theorem to guarantee the asymptotic stability. Formation flight controller is finally obtained by combining the trajectory tracking controller and the formation geometry keeping controller using a weighting parameter that depends on the relative distance error between unmanned aerial vehicles. Numerical simulations are performed to validate the performance of the proposed controller.

A Study on the Star-forming Dusty Elliptical Galaxy, NGC 855

  • Park, Sung-Joon;Jeong, Woong-Seob;Seon, Kwang-Il;Kim, Minjin;Ko, Jongwan;Marcum, Pamela
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.64.1-64.1
    • /
    • 2014
  • We study the dust and star-formation characteristics of a nearby dwarf elliptical galaxy, NGC 855. With various archival data from ultraviolet to far-infrared, we build up the spectral energy distribution (SED) that can give us constraints on stellar populations, dust characteristics, star-formation history, etc. From GALEX and SDSS data, slightly de-centered bluer central core is confirmed, where star formation might take place. This regions is coincident with seemingly dis-integrated cores detected by Spitzer IRAC data and with bright Ha feature observed at ground-based telescope. The PACS and SPIRE data by Herschel Space Observatory show the dominant dust features at the center. Lastly, we propose necessary follow-up observations with ground-based telescopes to investigate spectral properties of NGC 855.

  • PDF

Sliding Mode Control for the Configuration of Satellite Formation Flying using Potential Functions

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Kim, Hae-Dong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.56-63
    • /
    • 2005
  • Some methods have been presented to avoid collisions among satellites for satellite formation flying mission. The potential function method based on Lyapunov's theory is known as a powerful tool for collision avoidance in the robotic system because of its robustness and flexibility. During the last decade, a potential function has also been applied to UAV's and spacecraft operations, which consists of repulsive and attractive potential. In this study, the controller is designed using a potential function via sliding mode technique for the configuration of satellite formation flying. The strategy is based on enforcing the satellite to move along the gradient of a given potential function. The new scalar velocity function is introduced such that all satellites reach the goal points simultaneously. Simulation results show that the controller drives the satellite toward the desired point along the gradient of the potential function and is robust against external disturbances.

The Concept of the Formation of the Teacher's Innovative Competence in the Space of Lifelong Education

  • Boiko, Olha;Oborska, Svitlana;Kyrylenko, Kateryna;Cherevko, Svitlana;Lebid, Olha;Kulko, Viktoriia
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.59-64
    • /
    • 2021
  • The article proposes the process of formation of the teacher's innovative competence in the space of lifelong education the foundations of the formation of the teacher's innovative competence in the space of continuous education. The concept of the formation of the teacher's innovative competence in the space of lifelong education is proposed; it includes initial ideas, goals, objectives, patterns, principles, stages, content and technologies implementation of this process.

Influence of Removed Web Members in Shaping Formation for Hypar Space Truss

  • Kim Jin-Woo;Kwon Min-Ho;Lee Yong-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.16-21
    • /
    • 2006
  • This paper discusses the behavior of post-tensioned and shaped hypar space truss, with consideration of the influence of removing some web members. Hypar space truss is post-tensioned at the bottom chords of one diagonal on the ground; the essential behavior characteristic of shape formation is discussed by using a small-scale test model. Results of experiments and nonlinear finite-element analysis indicate that a planar, rectangular- arranged structure can be deformed to a predicted hyper shape, by the proposed shape formation method. Also the feasibility of the proposed method for furnishing of a hypar shaped face truss has been presented, under the condition of both non-removed and partially removed web members. It follows that a nonlinear finite element analysis method can be used in predicting the behavior of the space shape and the post-tensioning force in sharing of hypar space truss. Further, in comparison to the other cases, the results of test and analysis show that the active diagonal shaping in the non-removed web members and passive diagonal shaping of partially removed web members are in relatively good agreement.