DOI QR코드

DOI QR Code

The Evolution of the Mass-Metallicity Relation at 0.20 < z < 0.35

  • Chung, Jiwon (Department of Astronomy and Space Science, Chungnam National University) ;
  • Rey, Soo-Chang (Department of Astronomy and Space Science, Chungnam National University) ;
  • Sung, Eon-Chang (Korea Astronomy and Space Science Institute)
  • Received : 2013.02.09
  • Accepted : 2013.03.04
  • Published : 2013.03.15

Abstract

We present a spectroscopic study of 343 blue compact galaxies (BCGs) at 0.20 < z < 0.35 from the Sloan Digital Sky Survey (SDSS) DR7 data. We derive gas phase oxygen abundance using the empirical and direct method. Stellar masses of galaxies are derived from the STARLIGHT code. We also derive star formation rates of galaxies based on $H{\alpha}$ emission line from the SDSS as well as far-ultraviolet (FUV) flux from the Galaxy Evolution Explorer GR6 data. Evolution of the luminosity-metallicity and mass-metallicity (M-Z) relations with redshift is observed. At a given luminosity and mass, galaxies at higher redshifts appear to be biased to low metallicities relative to the lower redshift counterparts. Furthermore, low mass galaxies show higher specific star formation rates (SSFRs) than more massive ones and galaxies at higher redshifts are biased to higher SSFRs compared to the lower redshift sample. By visual inspection of the SDSS images, we classify galaxy morphology into disturbed or undisturbed. In the M-Z relation, we find a hint that morphologically disturbed BCGs appear to exhibit low metallicities and high SSFRs compared to undisturbed counterparts. We suggest that our results support downsizing galaxy formation scenario and star formation histories of BCGs are closely related with their morphologies.

Keywords

References

  1. Abazajian KN, Adelman-McCarthy JK, Agueros MA, Allam SS, Allende Prieto C, et al., The seventh data release of the Sloan Digital Sky Survey, ApJS, 182, 543-558 (2009). http://dx.doi.org/10.1088/0067-0049/182/2/543
  2. Alongi M, Bertelli G, Bressan A, Chiosi C, Fagotto F, et al., Evolutionary sequences of stellar models with semiconvection and convective overshoot. I - Z = 0.008, A&AS, 97, 851-871 (1993).
  3. Baldwin JA, Phillips MM, Terlevich R, Classification parameters for the emission-line spectra of extragalactic objects, PASP, 93, 5-19 (1981). http://dx.doi.org/10.1086/130766
  4. Bekki K, Formation of blue compact dwarf galaxies from merging and interacting gas-rich dwarfs, MNRAS, 388, L10 (2008). http://dx.doi.org/10.1111/j.1745-3933.2008.00489.x
  5. Bressan A, Fagotto F, Bertelli G, Chiosi C, Evolutionary sequences of stellar models with new radiative opacities. II - Z = 0.02, A&AS, 100, 647-664 (1993).
  6. Brinchmann J, Charlot S, White SDM, Tremonti C, Kauffmann G, et al., The physical properties of star-forming galaxies in the low-redshift universe, MNRAS, 351, 1,151-1,179 (2004). http://dx.doi.org/10.1111/j.13652966.2004.07881.x
  7. Bruzual G, Charlot S, Stellar population synthesis at the resolution of 2003, MNRAS, 344, 1,000-1,028 (2003). http://dx.doi.org/10.1046/j.1365-8711.2003.06897.x
  8. Cardelli JA, Geoffrey CC, Mathis JS, The relationship between infrared, optical, and ultraviolet extinction, ApJ, 345, 245-256 (1989). http://dx.doi.org/10.1086/167900
  9. Chabrier G, Galactic stellar and substellar initial mass function, PASP, 115, 763-795 (2003). http://dx.doi.org/10.1086/376392
  10. Chung J, Rey SC, Sung EC, Yeom BS, Humphrey A, et al., Enhanced nitrogen in morphologically disturbed blue compact galaxies at 0.20 < z < 0.35: probing galaxy merging features, ApJL, submitted (2013).
  11. Cid Fernandes R, Gu Q, Melnick J, Terlevich E, Terlevich R, et al., The star formation history of Seyfert 2 nuclei, MNRAS, 355, 273-296 (2004). http://dx.doi.org/10.1111/j.1365-2966.2004.08321.x
  12. Cid Fernandes R, Mateus A, Sodre L, Stasi?ska G, Gomes JM, Semi-empirical analysis of Sloan Digital Sky Survey galaxies - I. Spectral synthesis method, MNRAS, 358, 363-378 (2005). http://dx.doi.org/10.1111/j.1365-2966.2005.08752.x
  13. Cowie LL, Songaila A, Hu EM, Cohen JG, New insight on galaxy formation and evolution from keck spectroscopy of the Hawaii deep fields, AJ, 112, 839-864 (1996). http://dx.doi.org/10.1086/118058
  14. Damen M, Labbe I, Franx M, van Dokkum P, Taylor EN, et al., The evolution of the specific star formation rate of massive galaxies to z - 1.8 in the extended Chandra Deep Field South, ApJ, 690, 937-943 (2009). http://dx.doi.org/10.1088/0004-637X/690/1/937
  15. Ekta B, Chengalur JN, When are extremely metal-deficient galaxies extremely metal deficient?, MNRAS, 406, 1,238-1,247 (2010). http://dx.doi.org/10.1111/j.1365-2966.2010.16756.x
  16. Ellison SL, Patton DR, Simard L, McConnachie AW, Galaxy pairs in the Sloan Digital Sky Survey. I. Star formation, active galactic nucleus fraction, and the luminosity/mass?metallicity relation, AJ, 135, 1,877-1,899 (2008). http://dx.doi.org/10.1088/0004-6256/135/5/1877
  17. Erb DK, Shapley AE, Pettini M, Steidel CC, Reddy NA, et al., The mass-metallicity relation at z ${\geq}$2, ApJ, 644, 813-828 (2006). http://dx.doi.org/10.1086/503623
  18. Foster C, Hopkins AM, Gunawardhana M, Lara-Lopez MA, Sharp RG, et al., Galaxy And Mass Assembly (GAMA): the mass-metallicity relationship, A&A, 547, 79 (2012). http://dx.doi.org/10.1051/0004-6361/201220050
  19. Gavazzi G, Bonfanti C, Sanvito G, Boselli A, Scodeggio M, Spectrophotometry of Galaxies in the Virgo Cluster. I. The Star Formation History, ApJ, 576, 135-151 (2002). http://dx.doi.org/10.1086/341730
  20. Girardi L, Bressan A, Chiosi C, Bertelli G, Nasi E, et al., Evolutionary sequences of stellar models with new radiative opacities. VI. Z=0.0001, A&AS, 117, 113-125 (1996). https://doi.org/10.1051/aas:1996144
  21. Izotov YI, Stasinska G, Meynet G, Guseva NG, Thuan TX, The chemical composition of metal-poor emission-line galaxies in the Data Release 3 of the Sloan Digital Sky Survey, A&A, 448, 955-970 (2006). http://dx.doi.org/10.1051/0004-6361:20053763
  22. Izotov YI, Thuan TX, Lipovetsky VA, The primordial helium abundance from a new sample of metal-deficient blue compact galaxies, ApJ, 435, 647-667 (1994). http://dx.doi.org/10.1086/174843
  23. Johnson KE, Indebetouw R, Watson C, Kobulnicky HA, Revealing the young starburst in Haro 3 with radio and infrared imaging, AJ, 128, 610-616 (2004). http://dx.doi.org/10.1086/422017
  24. Kauffmann G, Heckman TM, Tremonti C, Brinchmann J, Charlot S, et al., The host galaxies of active galactic nuclei, MNRAS, 346, 1,055-1,077 (2003). http://dx.doi.org/10.1111/j.1365-2966.2003.07154.x
  25. Kennicutt RC Jr, Star formation in galaxies along the Hubble sequence, ARA&A, 36, 189-231 (1998). http://dx.doi.org/10.1146/annurev.astro.36.1.189
  26. Kewley LJ, Dopita MA, Sutherland RS, Heisler CA, Trevena J, Theoretical modeling of starburst galaxies, ApJ, 556, 121-140 (2001). http://dx.doi.org/10.1086/321545
  27. Kewley LJ, Ellison SL, Metallicity calibrations and the mass-metallicity relation for star-forming galaxies, ApJ, 681, 1,183-1,204 (2008). http://dx.doi.org/10.1086/587500
  28. Kewley LJ, Geller MJ, Barton EJ, Metallicity and nuclear star formation in nearby galaxy pairs: evidence for tidally induced gas flows, AJ, 131, 2,004-2,017 (2006). http://dx.doi.org/10.1086/500295
  29. Kewley, LJ, Rupke D, Zahid HJ, Geller MJ, Barton EJ, Metallicity gradients and gas flows in galaxy pairs, ApJ, 721, L48 (2010). http://dx.doi.org/10.1088/2041-8205/721/1/L48
  30. Lee H, Skillman ED, Chemical abundances of H II regions in the starburst galaxy NGC 1705, ApJ, 614, 698-715 (2004). http://dx.doi.org/10.1086/423735
  31. Maiolino R, Nagao T, Grazian A, Cocchia F, Marconi A, et al., AMAZE I. The evolution of the mass-metallicity relation at z > 3, A&A, 488, 463-479 (2008). http://dx.doi.org/ 10.1051/0004-6361:200809678
  32. Mateus A, Sodre L, Cid Fernandes, R, Stasi?ska, G, Schoenell, W, et al., Semi-empirical analysis of Sloan Digital Sky Survey galaxies - II. The bimodality of the galaxy population revisited, MNRAS, 370, 721-737 (2006). http://dx.doi.org/10.1111/j.1365-2966.2006.10565.x
  33. Mendez DI, Esteban C, Deep optical imaging and spectroscopy of a sample of Wolf?Rayet galaxies, A&A, 359, 493-508 (2000).
  34. Montuori M, Matteo PD, Lehnert MD, Combes F, Semelin B, The dilution peak, metallicity evolution, and dating of galaxy interactions and mergers, A&A 518, A56 (2010). http://dx.doi.org/10.1051/0004-6361/201014304
  35. Noeske KG, Faber SM, Weiner BJ, Koo DC, Primack JR, Star formation in AEGIS field galaxies since z = 1.1: Staged galaxy formation and a model of mass-dependent gas exhaustion, ApJ, 660, L47 (2007a). http://dx.doi.org/10.1086/517927
  36. Noeske KG, Weiner BJ, Faber SM, Papovich C, Koo DC, et al., Star formation in AEGIS field galaxies since z = 1.1: The dominance of gradually declining star formation, and the main sequence of star-forming galaxies, ApJ, 660, L43 (2007b). http://dx.doi.org/10.1086/517926
  37. Ostlin G, Amram P, Boulesteix J, Bergvall N, Masegosa, J, et al., Dynamics of blue compact galaxies, as revealed by their $H{\alpha}$ velocity fields, A&A 374, 800-823 (2001). http://dx.doi.org/10.1051/0004-6361:20010832
  38. Ostlin G, Cumming RJ, Amram P, Bergvall N, Kunth D, et al., Stellar dynamics of blue compact galaxies. I. Decoupled star?gas kinematics in ESO 400-G43, A&A 419, L43 (2004). http://dx.doi.org/10.1051/0004-6361:20040139
  39. Papovich C, Moustakas LA, Dickinson M, Le Floc'h E, Rieke GH, et al., Spitzer observations of massive, red galaxies at high redshift, ApJ, 640, 92-113, (2006). http://dx.doi.org/10.1086/499915
  40. Peeples MS, Pogge RW, Stanek KZ, Outliers from the mass?metallicity relation. II. A sample of massive metal-poor galaxies from SDSS, ApJ, 695, 259-267 (2009). http://dx.doi.org/10.1088/0004-637X/695/1/259
  41. Perez-Gonzalez PG, Rieke GH, Egami E, Alonso-Herrero A, Dole H, et al., Spitzer view on the evolution of star-forming galaxies from z = 0 to z-3, ApJ, 630, 82-107 (2005). http://dx.doi.org/10.1086/431894
  42. Reddy NA, Steidel CC, Fadda D, Yan L, Pettini Max, et al., Star Formation and Extinction in Redshift z-2 Galaxies: Inferences from Spitzer MIPS Observations, ApJ, 644, 792-812 (2006). http://dx.doi.org/10.1086/503739
  43. Rupke DNS, Kewley LJ, Chien LH, Gas-phase oxygen gradients in strongly interacting galaxies. I. Early-stage interactions, ApJ, 723, 1,255-1,271 (2010). http://dx.doi.org/10.1088/0004-637X/723/2/1255
  44. Rupke DSN, Veilleux S, Baker A, The oxygen abundances of luminous and ultraluminous infrared galaxies, ApJ, 674, 172-193 (2008). http://dx.doi.org/10.1086/522363
  45. Savaglio S, Glazebrook K, Le Borgne D, Juneau S, Abraham RG, The Gemini deep deep survey. VII. The redshift evolution of the mass-metallicity relation, ApJ, 635, 260-279 (2005). http://dx.doi.org/10.1086/497331
  46. Shi F, Zhao G, Liang YC, [Ne III]/[O II] as an oxygen abundance indicator in the H II regions and H II galaxies, A&A, 475, 409-414 (2007). http://dx.doi.org/10.1051/0004-6361:20077183
  47. Tremonti CA, Heckman TM, Kauffmann G, Brinchmann J, Charlot S, et al., The origin of the mass-metallicity relation: insights from 53,000 star-forming galaxies in the Sloan Digital Sky Survey, ApJ, 613, 898-913 (2004). http://dx.doi.org/10.1086/423264