• Title/Summary/Keyword: Space Optimization

Search Result 1,422, Processing Time 0.029 seconds

Optimum design of steel space structures using social spider optimization algorithm with spider jump technique

  • Aydogdu, Ibrahim;Efe, Perihan;Yetkin, Metin;Akin, Alper
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.259-272
    • /
    • 2017
  • In this study, recently developed swarm intelligence algorithm called Social Spider Optimization (SSO) approach and its enhanced version of SSO algorithm with spider jump techniques is used to develop a structural optimization technique for steel space structures. The improved version of SSO uses adaptive randomness probability in generating new solutions. The objective function of the design optimization problem is taken as the weight of a steel space structure. Constraints' functions are implemented from American Institute of Steel Construction-Load Resistance factor design (AISC-LRFD) and Ad Hoc Committee report and practice which cover strength, serviceability and geometric requirements. Three steel space structures are optimized using both standard SSO and SSO with spider jump (SSO_SJ) algorithms and the results are compared with those available in the literature in order to investigate the performance of the proposed algorithms.

Topology Optimization for a Knuckle Using Design Space Adjustment and Refinement (설계공간 조정과 세분화를 이용한 너클의 위상 최적설계)

  • Yu Yong-Gyun;Kwak Byung-Man;Jang In-Gwun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.595-601
    • /
    • 2006
  • Design space optimization using design space adjustment and refinement is used to optimize a knuckle in the suspension system of an automobile. This approach is a new efficient method for large-scale topology optimization by virtue of two reasons. First, design space adjustment including design space expansion and reduction is suitable for large-scale problems. Second, the design space refinement can be done globally or locally where and when necessary and thus is very effective in obtaining a target resolution with much less number of elements. Compliance minimization for a knuckle is considered with a realistic working condition to show the effectiveness and superiority of the new approach.

Optimized Polynomial Neural Network Classifier Designed with the Aid of Space Search Simultaneous Tuning Strategy and Data Preprocessing Techniques

  • Huang, Wei;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.911-917
    • /
    • 2017
  • There are generally three folds when developing neural network classifiers. They are as follows: 1) discriminant function; 2) lots of parameters in the design of classifier; and 3) high dimensional training data. Along with this viewpoint, we propose space search optimized polynomial neural network classifier (PNNC) with the aid of data preprocessing technique and simultaneous tuning strategy, which is a balance optimization strategy used in the design of PNNC when running space search optimization. Unlike the conventional probabilistic neural network classifier, the proposed neural network classifier adopts two type of polynomials for developing discriminant functions. The overall optimization of PNNC is realized with the aid of so-called structure optimization and parameter optimization with the use of simultaneous tuning strategy. Space search optimization algorithm is considered as a optimize vehicle to help the implement both structure and parameter optimization in the construction of PNNC. Furthermore, principal component analysis and linear discriminate analysis are selected as the data preprocessing techniques for PNNC. Experimental results show that the proposed neural network classifier obtains better performance in comparison with some other well-known classifiers in terms of accuracy classification rate.

Design optimization of semi-rigid space steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms

  • Shallan, Osman;Maaly, Hassan M.;Sagiroglu, Merve;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.221-231
    • /
    • 2019
  • This paper performs for the first time a simultaneous optimization for members sections along with semi-rigid beam-to-column connections for space steel frames with fixed, semi-rigid, and hinged bases using a biogeography-based optimization algorithm (BBO) and a genetic algorithm (GA). Furthermore, a member's sections optimization for a fully fixed space frame is carried out. A real and accurate simulation of semi-rigid connection behavior is considered in this study, where the semi-rigid base connections are simulated using Kanvinde and Grilli (2012) nonlinear model, which considers deformations in different base connection components under the applied loads, while beam-to-column connections are modeled using the familiar Frye and Morris (1975) nonlinear polynomial model. Moreover, the $P-{\Delta}$ effect and geometric nonlinearity are considered. AISC-LRFD (2016) specification constraints of the stress and displacement are considered as well as section size fitting constraints. The optimization is applied to two benchmark space frame examples to inspect the effect of semi-rigidity on frame weight and drift using BBO and GA algorithms.

Spatial Information Based Simulator for User Experience's Optimization

  • Bang, Green;Ko, Ilju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.3
    • /
    • pp.97-104
    • /
    • 2016
  • In this paper, we propose spatial information based simulator for user experience optimization and minimize real space complexity. We focus on developing simulator how to design virtual space model and to implement virtual character using real space data. Especially, we use expanded events-driven inference model for SVM based on machine learning. Our simulator is capable of feature selection by k-fold cross validation method for optimization of data learning. This strategy efficiently throughput of executing inference of user behavior feature by virtual space model. Thus, we aim to develop the user experience optimization system for people to facilitate mapping as the first step toward to daily life data inference. Methodologically, we focus on user behavior and space modeling for implement virtual space.

Dolphin Echolocation Optimization: Continuous search space

  • Kaveh, A.;Farhoudi, N.
    • Advances in Computational Design
    • /
    • v.1 no.2
    • /
    • pp.175-194
    • /
    • 2016
  • Nature has provided inspiration for most of the man-made technologies. Scientists believe that dolphins are the second to humans in smartness and intelligence. Echolocation is the biological sonar used by dolphins for navigation and hunting in various environments. This ability of dolphins is mimicked in this paper to develop a new optimization method. Dolphin Echolocation Optimization (DEO) is an optimization method based on dolphin's approach for hunting food and exploration of environment. DEO has already been developed for discrete optimization search space and here it is extended to continuous search space. DEO has simple rules and is adjustable for predetermined computational cost. DEO provides the optimum results and leads to alternative optimality curves suitable for the problem. This algorithm has a few parameters and it is applicable to a wide range of problems like other metaheuristic algorithms. In the present work, the efficiency of this approach is demonstrated using standard benchmark problems.

Development of an Optimization Algorithm Using Orthogonal Arrays in Discrete Space (직교배열표를 이용한 이산공간에서의 최적화 알고리즘 개발)

  • Yi, Jeong-Wook;Park, Joon-Seong;Lee, Kwon-Hee;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.408-413
    • /
    • 2001
  • The structural optimization is carried out in the continuous design space or discrete design space. Methods for discrete variables such as genetic algorithms are extremely expensive in computational cost. In this research, an iterative optimization algorithm using orthogonal arrays is developed for design in discrete space. An orthogonal array is selected on a discrete design space and levels are selected from candidate values. Matrix experiments with the orthogonal array are conducted. New results of matrix experiments are obtained with penalty functions for constraints. A new design is determined from analysis of means(ANOM). An orthogonal array is defined around the new values and matrix experiments are conducted. The final optimum design is found from iterative process. The suggested algorithm has been applied to various problems such as truss and frame type structures. The results are compared with those from a genetic algorithm and discussed.

  • PDF

BIM Space Layout Optimization by Space Syntax and Expert System (공간구문론과 전문가시스템을 활용한 BIM 공간배치 최적화 방안)

  • Kwon, Ocheol;Cho, Joowon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.1
    • /
    • pp.18-27
    • /
    • 2017
  • As building space constitution and layout are critical for satisfying the building owner and users, their optimization is so important in the design process. However it's not always simple to set up objective criteria for the space layout optimization for different requirements and the architects mostly depend on their own experience for these. This study is to suggest a way to make up for this issue by referencing and deducing the space layout based on the given BIM space information and existing knowledge. For this purpose, the Space Syntax is applied to extract the information from a space model and an Expert System is used to make the best use of the relevant knowledge. Based on the Integration indexes for all the spaces, we could compare the space layout alternatives and determine the best selection for different accessibility conditions.

Initial Shape Design of Space Truss Structure using Density Method (밀도법을 이용한 스페이스 트러스 구조물의 초기 형상 설계)

  • Kim, Ho-Soo;Park, Young-Sin;Yang, Myung-Kyu;Lee, Min-Ho;Kim, Jae-Yoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.59-66
    • /
    • 2010
  • This study presents the topology optimization technique by density method to determine the initial shape of space truss structures. Most initial shape design is performed by designer's previous experiences and trial and error method instead of the application of reasonable optimization method. Thus, the reasonable and economical optimization methods are needed to be introduced for the initial shape design. Therefore, we set design domain for cantilever space truss structure as an example model. And topology optimization is used to obtain optimum layout for them, and then size optimization method is used to find the optimum member size. Therefore, the reasonable initial optimal shapes of spatial truss structures can be obtained through the topology and size optimization using density method.

  • PDF