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AMS Mathematics Subject Classification : Primary 90C30; Secondary
90C26, 90C25

Key words and phrases : Optimization in complex space, sufficient condi-
tion

1, Introduction

In this paper, we consider the optimization problem in complex space
Minimize Re f(z) subjectto ze€ M, g(z)€S, (1)

where M is a nonempty subset of C*, § is a nonempty subset of C™, and
f:M—-Candg: M — C™ are two functions.

Even though extremum problems, which contain complex functions with com-
plex variables, have been studied for a long time, the founder of the optimization
in complex space is considered to be N. Levinson, who, in a paper appeared in
1966 [22], generalizing Farkas’ theorem to the complex space, gave duality the-
orems for a particular case of the complex linear optimization problem. The
results obtained by N. Levinson are analogous to the duality theorems of real
linear optimization.

In 1967, M.A. Hanson and B. Mond [21], generalizing P. Wolfe’s duality from
the optimization in real space to the optimization in complex space and using
W.S. Dorn’s technique from the real space, proved duality theorems for a partic-
ular case of a quadratic optimization problem in complex space. After one year,
M. A. Hanson and B. Mond tock over their studies of quadratic optimization
problems in complex space in two papers [23], [24].
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In 1969, A. Ben-Israel [4] formulated the pair of dual problems for the general
linear optimization problem in complex space and gave duality theorems analo-
gous to those from the linear optimization in real space. In the same year, R.A.
Abrams, in his doctoral thesis (1], formulated the general optimization problem
in complex space. The main results of R.A. Abrams’ thesis were published in
two papers [3] and (2], the second being written in collaboration with A. Ben-
Israel. In {3}, a Kuhn-Tucker constraint qualification is given and a Kuhn-Tucker
theorem for the general optimization problem in complex space is proved, while
in [1] sufficient conditions for a point to be an optimal solution of an optimiza-
tion problem in complex space, saddle point theorems and duality theorems are
presented.

In 1978, D.L. Duca [9] formulated the vectorial optimization problem in com-
plex space and obtained some necessary and sufficient conditions for a point to
be the efficient solution of a problem; the same idea is treated in some other
papers, too [10], [11], [16], [17], [25], [19}.

From 1966 until now, hundreds of papers on optimization in complex space
have been written. Among these, we recall some which are very important.
Thus, in B.D. Craven and B. Mond’s papers [5] and [6] a F. John theorem for the
optimization problem in complex space is proved. In D.I. Duca’s paper [8], three
new complex constraint qualifications are given and a Kuhn-Tucker theorem is
proved, the idea being treated again by the author of this paper in [12], where he
gave a new proof of the F. John theorem, with richer conclusions than the ones
given by B.D. Craven and B. Mond. Three new constraint qualifications, along
with several implications among the seven complex constraint qualifications are
also given in [12], while at the end of the paper, under the assumption that one of
the seven complex constraint qualifications is satisfied, a Kuhn-Tucker theorem
is proved. In [13], two saddle point theorems are given. Let us also mention the
fact that B.D. Craven and B. Mond in [7] and D.I. Duca in [14] found, under
weak enough hypothesis, sufficient conditions for a saddle point to be an optimal
solution of the complex optimization problem.

2. Notations and preliminaries

Denote by C*(R") n-dimensional complex (real) space, and by C™*" the set
of m x n complex matrices. If A is a matrix or a vector, then AT, 4, A# denote
its transpose, complex conjugate, and conjugate transpose respectively.

For z,w € C*; (z,w) = w2 denotes the inner product of z and w.

The nonempty set S in C™ is a polyhedral cone if it is an intersection of
closed half-spaces in C™, each containing 0 in its boundary, i.e.,

P
§=()Hz(da"),
k=1

where

H (ak) = {v € C™: Re(v, ak> > 0}, k=1,..p.
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P

Ifve S = ()Hs(aF), then S(v) is defined to be the intersection of those
k=1

closed half-space H (a*) which include v in their boundaries, ie.,

S()= (] Hsx (a"),
keE
where
E={ke{1,..,p}:Re(v,a*) = 0}.
If S is a nonempty subset of C", then
S*={ueC": Re(u,z) >0, for all z € S}
denotes the polar of the set S.

Definition 1. Let M be a nonempty subset of C* and z° be an interior point
of M.

A function f : M — C™ is said to be differentiable at 20 if there exist two
matrices V, f (%), Vzf (2°) € C™*" and a function ¢ : M — C™, continuous
at 20 and vanishing at this point, i.e.,

lim €(z) =¢ (zo) =0,

Z—Z

such that, for each 2 € M, it holds

f(2) = f(2%) = [Vef ()] (2 = 2°) + [Vaf ()] (F =) + [l = 2| e (2).

The function f is said to be differentiable on My C M if f is differentiable at
each z € M,.

The function g : M — C is said to be twice differentiable at z° if the function
g is differentiable on a neighbourhood V' C M of z° and the functions V.g(-),
Vzg () : V — C" are differentiable at 2°. We will denote by:

Vizg (ZO) =V, (Vzg) (zO) e Cc™n, V%zg (ZO) =V. (VEQ) (ZO) € Crem,
Vig (zo) = Vz(V.9) (20) eCrxm, Vig (z°) = Vz(Vzg) (20) € Cnxn,
Definition 2. Let M be a nonempty subset of C", z be a point from M, S be

a subset of C™ and f: M — C™ be a function.

i) We say that the function f is convezr at z with respect to S if, for each
v € M\ {z} and each a €]0, 1] with the property that

l-a)z4+aveM,

we have
1-a)f(z)+af(@)—f(1-a)z+av) €S

i) We say that the function f is quasiconver at z with respect to § if, for
each v € M \ {z} with the property that
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f(z)-flv)es
and, for each a €]0,1[ such that (1 — a) z + aw € M, we have
fE-f(l-a)z+av)€S.

11) We say that the function f is pseudoconver at z with respect to S if z is
an interior point of M, f is differentiable at z and, for each v € M \ {z} such
that

(V2 (2)] (v~ 2) + [Vzf(2)] (T - 2) € S,
we have
flv)-f(z) €S

iv) We say that the function f is concave (respectively quasiconcave, pseudo-
concave) at z with respect to S if the function (—f) is convex (respectively
quasiconvex, pseudoconvex) at z with respect to S.

v) We say that the function f has convex (respectively concave, quasiconvex,
quasiconcave, pseudoconvex, pseudoconcave) real part at z with respect to R
if f is convex (respectively concave, quasiconvex, quasiconcave, pseudoconvex,
pseudoconcave) at z with respect to S = {w € C™: Rew € RT}.

Theorem 1. Let M be a nonempty subset of C™, z be an interior point of M,
S be a closed convex cone in C™ and f: M — C™ be a differentiable function
at z.

19, If the function f is convex at z with respect to S, then

f) = f(2) = [Vof(2)] (v —2) = [V=f(2)]| (T - Z) € S for allv € M.
20, If the function f is concave at z with respect to S, then

f(2) = f(0) = V£ (2)] (z —v) = [V=f(2)] (= D) € S for allv e M.

30. If the function f is quasiconver at z with respect to S, then, for each
2 € M with the property that f (z) — f (v) € S, we have

[Vof(2)] (z —v) + [V=f(2)] (- 7) € S.

4%, If the function f is quasiconcave at z with respect to S, then, for each
z € M with the property that f (v) — f (z) € S, we have

(V. f(@)] (v—2)+ [Vzf(2)](T-2) € S.

In [14] one proves the following sufficient conditions for optimal solutions of
the optimization in complex space.
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Theorem 2. Let M be a nonempty subset of C™ and 2° be an interior point of
M. Let also f : M - C and g : M — C™ be two differentiable functions at 2°
and S be a closed convex cone in C™.

A sufficient condition for

LeX={zeM:.g(z)e 8}

to be a solution of Problem (1) is that there exists a point v° € C™ such that the
Junction L: M — C defined by

L(z) = £ () - g(2), %) for all 2 € M,

has pseudoconvex real part at 20 with respect to Ry and
0 € 8*, Re(g(z9),v%) =0

and ——
Re <z — 2% V. f(2°) + Vz£(2°)

~[Vag(2)] (o°) = [Vz9(9) T (2°) ) 2 0
forall z e X.

An important particular case of Theorem 2 is the following corollary.

Corollary 1. Let M be a nonempty subset of C*, z0 be an interior point of
M and S be a closed convex cone in C™. Let also f : M — C be a function
differentiable at 2°, with convex real part at 20 with respect to Ry and g: M —
C™ be a function differentiable at 2° and concave at z° with respect to S.

A sufficient condition for

LeX={zeM: g(z)e§}

to be a solution of Problem (1) is that there exists a point 1° € C™ such that
v’ € 8%, Relg(z%),v°) =0
and
Vo f(20) + V£ (2%) = [Vag(2°)" (v°) = [Vz9(°)]" (2°) = 0.

Theorem 3. Let M be a nonempty subset of C*, 2° be an interior point of
M and S be a polyhedral cone in C™. Let also f : M — C be a function
differentiable at z° with pseudoconvex real part at z° with respect to Ry and
g: M — C™ be a function differentiable at z° and quasiconcave at z° with
respect to S(g(2%)).

A sufficient condition for

LeX={zeM:g(z)e 8}
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to be a solution of Problem (1) is that there exists a point v° € C™ such that

o’ € (89 ("))

and ___
Re(z — 2%, V. f(20) + Vzf(2%)-

—[V.9(O)H (v°) — [Vzg(z%)]T (?°)) > 0 for all z € X.

In this paper, we give sufficient conditions for the solutions of optimization
problems in complex space without hypotheses of convexity about functions.

3. Main Results

Theorem 4. Let M be a nonempty subset of C*, 2° be an interior point of M,
f:M—Candg: M — C™ be twice differentiable functions at z° and

S=({Hs(a") ke {1,..,q}}

be a polyhedral cone in C™.

Let
() € R (2)
be such that
q
0= Z wa* € 8* (3)
k=1
satisfies
Re(g(z°),2%) =0 (4)
and

V2 f (%) + Vzf (%) = [Vag(O)7 (1°) — [Vzg(z") T (@°) = 0. (5)
Let also
E={ke{1,..q}: Re(g (%), a¥) = 0}

and By = {k € E : vy >0}.
If, for each solution d € C™ \ {0} of the system

{ [V29(22)] (d) + [Vzg(0)|(@) € S(9(z2)),
Re([V29(=")] (d) + [Vz9(=")] (@) ,a*) = 0, k € B

we have
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(VETGD) + VET D) + VA1) + V& (29)
~ (V290" (&) - (V2] (+%) ™
- [V2.960] " (2°) - [V29(z")] " (@)} (@), d) >,

where
(V206" 0) = 548 Vg,
[V259(2)] " (+°) = fllvo VZ9;(29),
(V2.0 () = 379 VE.gi(<7)
[Vao()" () = 57 VEia3(:9),

then 2° is a local solution of Problem (1).

Proof. Let us assume that 20 is not a local solution of Problem (1). Then there
exists a sequence (27)jen from X \ {29} which converges to 20 such that

Re f(z7) < Re f(2°), forall j€N. (8)
For each j € N we make the following denotations:
ti= -2 and & = -t};(zj — ).
Then we have
t; >0 and 2 =z°+tjdj, forall jeN
and .lim t; = 0. Since ”dj ” = 1forall j € N, it follows that the sequence

(d) jeN contains a convergent subsequence. Without loss of generality, we can
assume that the sequence itself is convergent. Let d = hm d’. Then ||d|] = 1.

From (8) we deduce that
Retlj[f(z0 +t;d") - f(29)] <0, forall j € N.
From this, by passing to limit, we obtain that
Re {[V2f(=")] (d) + [V=£(2°)] (d) } < 0. (9)

From 27 € X for all j € N, we have g(z7) € § for all j € N and hence g(27) —
g(2°) € S(g(2°)) for all j € N. It follows that
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~{9(+ 1) —g ()} €5 (9 () forall j€N.
J
From this, by passing to limit, we obtain that
[V.9(z%)] (d) + [Vz9(z°)] (d) € S(9(z%)),

or, equivalently

Re([V,9(z%)] (d) + [Vz9(z°)] (d) ,a*) > 0 forall k € E.
We will show, by contradiction, that

Re([V.g(2%)] (d) + [Vz9(z°)] (d) ,a*) = 0 for all k€ E;.

Let us assume that there exists kg € F, such that

Re([V29(z")] (d) + [Vzg(=")] (d) ,a*) > 0.
Then, from (2), (3), (4), (11) and (13), we obtain
Re([V29(<)] (d) + [Vz9(2")) (d) ,0")

= Re([V.9(z")] (d) + [Vz9(z°)] (d) , Y _a®)
k=1

q
=3 WRe((V29(")] (d) + [Vz9(z")] @) ,0*)

k=1
= Y W Re([V29(")) (¢) + [Vag(z")] @) ,*

kEE
> i, Re([V29(2%)] (d) + [Vz9(2%)] (d) ,a*) > 0.

Hence

Re([V.g(z")] (d) + [Vz9(z°)] (d) ,+°) > 0.
On the other hand, from (5) and (9), we have
Re([V.g(z%)] (d) + [Vz9(=")] (d) ,+°)
= Re(d, [V.g(=O)]" (+") + [Vzg(=*)]" ()}
= Re(d, V. f(z%) + Vz£(2")
=Re {[V2/(z)] (@) + [V=£(")] (@) } <0,
which contradicts (14).

(10)

(11)

(12)

(13)

(14)

From (12) and (10), it follows that d is a solution of system (6). Then we have

(VLF) + VEF) + V2, (") + VEF()

-[v zg(z")} (v°) = [Vizo(= °)] (+%)

— [V2,960)]" (@) - [VE9(:]" @)] (@), 4) >o0.

(15)
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If we denote by F': M — C the functionF(z) = f(z) — (g(2),v°), for all z € M,
then

V.F(2%) =V f(z°%) - |

VzF(2°) = Vz£(2°) — [Vz9(2%)] (°),
VEZF(ZO) = ngf(zo) - iﬁz nggk(zo))
VEEF(ZO) = ngf(zo) - iﬁg nggk(zo)’
VEF(0) = V2, (%) - 39 V2,0(2Y),
V() = V() ~ 3 R Viage(9).

It follows that inequality (15) can be writte

=1

as

(IVLF(E) + VEF() + V2 F() + VEF(R)] (d),d) > 0. (16)
On one hand, we have
Re F(2') Re f(z7) — Re(g(2),7°) < Re f(2°)
= Re f(z°) ~ Re(g(%),2°)
= ReF(2° forallj €N,

because g(z/) € S forallj €N, v° € 5* and Re(g(z°),v°) = 0. On the other

hand, foreach j € N
Re {F(zj ) — F(2%) — t; <v,F(z°) + VoF (79, df >}
=Re {f() - (9(#),2°) — F(°) + (9(z°), )}
—t; Re (&, V.10 — [Va9(2)]" (2°) + Vf (%) - [Vz9(%)] " (%))
=Re {f(7) - £(z°) = (9(z7),v")}
< Re{f(z') - f(z°)} < 0.
Hence, for each j € N

Re zli {F(°+ t;d) — F(2°) — t;(V. F(z°) + VzF(2°), &)} <0
i

From this, by passing to limit, we obtain

Re {[V2,F(2%) + VEF(:°) + VEF() + VEF ()] (d),d) <0
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which contradicts (16).
Therefore z° is a local solution of Problem (1). |
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