• Title/Summary/Keyword: Source impedance

Search Result 378, Processing Time 0.024 seconds

Variation of Radiation Impedance for Piston Source According to Baffle

  • Park, Soon-Jong;Kim, Moo-Joon;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2E
    • /
    • pp.46-50
    • /
    • 2001
  • The characteristics of radiation impedance are analyzed by algorithms which consists of Finite Element Method (FEM) and Hybrid type Infinite Element Method. The changes of radiation impedance for piston source according to the size and the material properties of baffles are studied. The results of the radiation impedance for rigid finite baffle coincide with other reports. The more the material properties of baffle that comes across the acoustic medium, the more the calculation results of radiation impedance approach the ones without baffle. Therefore, these results can be applied to the design and the radiation characteristics analysis of acoustic transducers.

  • PDF

Comparison of the Standard Floor Impact Source with the Human Impact Source (표준충격원과 실충격원의 특성 비교)

  • Lee, Pyoung-Jik;Jeong, Jeong-Ho;Jeon, Jin-Yong;Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.804-807
    • /
    • 2005
  • The characteristics of the standard floor impact sources and the human impact source were investigated. First, the mechanical impedance of the each source was evaluated. Second, the impact force exposure levels and impact sounds level driven by the each source were measured. The results showed that the mechanical impedance and impact force exposure level of the impact ball are the most similar to those of the human impact source among the standard impact sources.

  • PDF

Prediction of the Radiated Noise from the Vehicle Intake System (자동차 흡기계의 방사소음 예측에 대한 연구)

  • Kim, Hoi-Jeon;Ih, Jeong-Guon;Lee, Seong-Hyun;Shinoda, K.;Kitahara, S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.105-108
    • /
    • 2005
  • The radiated noise from the automotive intake system should be predicted at the design stage. To this end, the precise measurement of in-duct acoustic source parameters of the intake system, i.e., the source strength and source impedance, is essential. Most of previous works on the measurement of acoustic source parameters were performed under a fixed engine speed condition. However, the requirement of vehicle manufacturer is the noise radiation pattern as a function of engine speed. In this study, the direct method was employed to measure the source parameters of engine intake system under a fixed engine speed and engine run-up condition. It was noted that the frequency spectra of source impedance hardly changes with varying the engine speed. Thus, it is reasonable to calculate the source strength under the engine run-up condition by assuming that source impedance is invariant with engine speed. Measured and conventional source models, i.e., constant pressure source, constant velocity source, and non-reflective source, were utilized to predict insertion loss and radiated sound pressure level. A reasonable prediction accuracy of radiated sound pressure level spectra from the intake system was given in the test vehicle when using the measured source characteristics which were acquired under the operating condition.

  • PDF

Acoustic Source Power Control and Global Noise Reduction by Selection of Distribution and Impedance of Absorptive Materials in Acoustically Small Enclosures (흡음재의 배치와 임피던스 선정을 통한 음원 방사파워 제어와 전역 소음 감소)

  • 김양한;조성호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.668-674
    • /
    • 2004
  • The possibility of global noise reduction by the sound power control through selection of distribution and impedance of absorptive materials is discussed. It is necessary to investigate the relation between the global sound energy in the field and the total sound power radiated by sources. In the previous work,$^{(1.2)}$ the authors presented a useful design method to change boundary condition that can be useful to reduce noise in acoustically small enclosures. Changing boundary condition Is related to not only enclosure’s geometrical shape but also acoustical treatment on walls for example, attaching of impedance patches (ex: absorptive material). In many practical situations, we often meet situation to change acoustical treatment on walls. The possibility of total acoustic potential energy(globa1 noise) reduction by acoustic source power control is examined in an acoustically small cavity Using acoustic energy balance equation, the relation between global noise control performance and absorptive material’s arrangement/impedance is deduced. Numerical simulation is performed to interpret its physical meaning in terms of absorbent’s distribution and impedance.

Neutral-point Potential Balancing Method for Switched-Inductor Z-Source Three-level Inverter

  • Wang, Xiaogang;Zhang, Jie
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1203-1210
    • /
    • 2017
  • Switched-inductor (SL) Z-source three-level inverter is a novel high power topology. The SL based impedance network can boost the input dc voltage to a higher value than the single LC impedance network. However, as all the neutral-point-clamped (NPC) inverters, the SL Z-source three-level inverter has to balance the neutral-point (NP) potential too. The principle of the inverter is introduced and then the effects of NP potential unbalance are analyzed. A NP balancing method is proposed. Other than the methods for conventional NPC inverter without Z-source impedance network, the upper and lower shoot-through durations are corrected by the feedforward compensation factors. With the proposed method, the NP potential is balanced and the voltage boosting ability of the Z-source network is not affected obviously. Simulations are conducted to verify the proposed method.

Comparison of Standard Floor Impact Sources with a Human Impact Source (바닥충격음 측정용 표준충격원과 실충격원의 특성 비교)

  • Lee, Pyoung-Jik;Jeong, Jeong-Ho;Park, Jun-Hong;Jeon, Jin-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.789-796
    • /
    • 2006
  • The characteristics of the four standard floor impact sources (impact ball, bang machine, tapping machine, modified tapping machine) and a human impact source (jumping children) were investigated. First, the mechanical impedance of each source were evaluated. Then, the impact force exposure level of each source were measured. The results showed that fundamental frequency and impedance produced by the impact ball are the most similar to those of the human impact source. The frequency characteristics of the impact ball were most similar to those of jumping children. Consequently, the impact ball more accurately reproduces human impact compared to the other standard impact sources. Therefore, the impact ball should be considered as the reliable impactor in evaluating floor impact noise.

A Review of the Possible Causes of Negative Source Impedance in Fluid Machines (유체기계에 있어서 부의 음원 임피던스의 원인에 관한 고찰)

  • ;Keith S. Peat
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.76-82
    • /
    • 2001
  • Most fluid machines can be considered as periodic noise sources when operated under constant conditions, which allows for a frequency domain representation of the source and the associated acoustic field In the duct. In such a representation, the source is characterized by frequency-dependent values of both strength and impedance. Although knowledge of these values can be gained by either experimentation or by modeling, one-port acoustic characteristics of an in-duct source with high flow velocity, high temperature, and high sound level can be measured only by the multiload method using an overdetermined set of open pipes with different lengths as applied loads. However, the problem is that negative source resistances have been often measured. This paper reviews the possible causes of the problem, with reference to experimental and theoretical results, in an attempt to clarify the issue. A new interpretation is given for the violation of basic assumptions and the defect in the algorithm of multiload method. The major cause and mechanism of the problem is due to the violation of time invariance assumption of the source and the load impedance can seriously affect the final measured result of source impedance.

  • PDF

Operational Characteristics of a Superconducting Fault Current Limiter with an Open Core (개방철심형 고온초전도한류기의 동작 특성)

  • 이찬주;이승제;강형구;김태중;현옥배;고태국
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.40-44
    • /
    • 2001
  • Recently. the high-tc superconducting fault col-rent limiters (SFCL) are studied worldwide to be classified as a resistive type or an inductive type such as a magnetic shielding type and a inductive type. The high-tc SFCL wish an open core belongs to the magnetic shielding type SFCL. Unlike conventional magnetic shielding type SFCLS it uses the open core to reduce the mechanical vibrations and installation space, The high-tc SFCL with an open core was designed and manufactured by stacking three BSCCO 2212 tubes. It was tested in the maximum source voltage of 400 Vrms. The results such as the reduction of fault current and impedance of the SFCL are described in this paper. The results show that the fault current in the source voltage of 400 Vrms was reduced to be about 123 Apeak. about 3.9 times greater than the normal state current. Also, the impedance of the high-tc SFCL was about 9${\Omega}$ about 9 times greater than the normal state impedance. The impedance of the SFCL appears just after the fault, and its size is dependent on the source voltage. From the impedance, the inductance of the SFCL was calculated.

  • PDF

Single-Phase Impedance-Source Dynamic Voltage Restorer (단상 임피던스-소스 동적 전압 보상기)

  • Park, H.J.;Jung, Y.G.;Lim, Y.C.
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.458-461
    • /
    • 2008
  • This paper deals with a single-phase impedance-source dynamic voltage restorer (Impedance-DVR) to mitigate voltage sag/swell for the critical loads. The proposed system is composed of passive filter and impedance-source topology inverter. As an ESS(Energy Storage System) of the proposed system is employed the Proton Exchange Membrane Fuel Cells (PEMFC). To calculate and control the compensation voltage, single-phase $^id-^iq$ theory in dq rotating reference frame and PI controller are used. Simulation results under voltage sag and swell are presented to show the performance.

  • PDF

A study on the impedance effect of nonvolatile memory devices (비휘발성 기억소자의 저항효과에 관한 연구)

  • 강창수
    • Electrical & Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.626-632
    • /
    • 1995
  • In this paper, The effect of the impedances in SNOSFET's memory devices has been developed. The effect of source and drain impedances measured by means of two bias resistances - field effect bias resistance by inner region, external bias resistance. The effect of the impedances by source and drain resistance shows the dependence of the function of voltages applied to the gate. It shows the differences of change in source drain voltage by means of low conductance state and high conductance state. It shows the delay of threshold voltages. The delay time of low conductance state and high conductance state by the impedances effect shows 3[.mu.sec] and 1[.mu.sec] respectively.

  • PDF