• Title/Summary/Keyword: Sound attenuation

Search Result 210, Processing Time 0.023 seconds

Active Sound Control Approach Using Virtual Microphones for Formation of Quiet Zones at a Chair (좌석의 정음공간 형성을 위한 가상마이크로폰 기반 능동음향제어 기법 연구)

  • Ryu, Seokhoon;Kim, Jeakwan;Lee, Young-Sup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.9
    • /
    • pp.628-636
    • /
    • 2015
  • In this study, theoretical and experimental analyses were performed for creating and moving the zone of quiet(ZoQ) to the ear location of a sitter by using active sound control technique. As the ZoQ is actively created at the location of the error microphone basically with an active sound control system using an algorithm such as the filtered-x least mean square(FxLMS), the virtual microphone control(VMC) method was considered to move the location of the ZoQ to around the sitter`s ear. A chair system with microphones and loudspeakers on both sides was manufactured for the experiment and thus an active headrest against the swept narrowband noise as the primary noise was implemented with a real-time controller in which the VMC algorithm was embedded. After the control experiment with and without the VMC method, the location variation of the ZoQ by analyzing the error signals measured by the error and the virtual microphones. Therefore, it is observed that the FxLMS with the VMC technique can provide the re-location of the ZoQ from the error microphone location to the virtual microphone location. Also it is found that the amount of the attenuation difference between the two locations was small.

Comparison of Kramers-Krönig Relation and High-Frequency Acoustic Measurements in Water-Saturated Glass Beads (다공성 입자 매질에서 고주파 영역 음향 측정 자료와 Kramers-Krönig 관계식의 비교)

  • Yang, Hae-Sang;Lee, Keun-Hwa;Seong, Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.7
    • /
    • pp.402-407
    • /
    • 2011
  • The necessary and sufficient condition for causality of a physical system can be expressed as Kramers-Kr$\ddot{o}$nig (K-K) relation. K-K relation for acoustic wave is a Hilbert transforms pair between dispersion equations of phase speed and attenuation. In this study, we quantitatively compare the acoustic measurements in water-saturated glass beads for the frequency ranges from 400 kHz to 1.1 MHz with the predictions of differential form of K-K relation obtained by Waters et al. For media with attenuation obeying an arbitrary frequency power law, acoustic measurements show good agreements with the predictions of Kramers-Kr$\ddot{o}$nig relation.

Design and Fabrication of an Implantable Microphone for Reduction of Skin Damping Effect through FEA Simulation (피부에 의한 이득 감쇠를 줄이기 위한 FEA 시뮬레이션 기반의 이식형 마이크로폰 설계 및 구현)

  • Han, Ji-Hun;Kim, Min-Woo;Kim, Dong-Wook;Seong, Ki-Woong;Cho, Sung-Mok;Park, Il-Yong;Cho, Jin-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.1
    • /
    • pp.59-65
    • /
    • 2008
  • Nowadays, implantable hearing aids have been developed to solve the problems of conventional hearing aids. In case of fully implantable hearing aids, an implantable microphone is necessary to receive sound signal beneath the skin. Normally, an implantable microphone has poor frequency response characteristics in high frequency bands of acoustic signal due to the high frequency attenuation effect of skin after implantation to human body. In this paper, the implantable microphone is designed to reduce the high frequency attenuation effect of a skin by putting its resonance frequency at the attenuated range through a finite element analysis (FEA) simulation. The designed implantable microphone through the simulated results has been fabricated by manufacturing process using bio-compatible materials. By the several in-vitro experiments with pig skin, it has been verified that the designed implantable microphone has a resonance frequency around the starting part of the attenuated range and reduces the attenuation effect.

Development of Safe Stove System using Sound Wave Fire Extinguisher (음파 소화기를 이용한 안전 스토브 시스템 개발)

  • Seo, Yunwon;Lee, Sukjae;Park, yungjoo;Kim, Kinam;Choi, Yongrae;Hwang, Hyungjun;Han, Seunghan;Shim, Dongha
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.34-39
    • /
    • 2018
  • In this paper, the architecture of a safe stove with an automatic fire suppression function using a sound wave fire extinguisher has been proposed and developed for the first time. A microcontroller connected to a fire sensor detects and suppresses a fire by driving a fire extinguisher. The sound wave fire extinguisher is composed of a speaker and collimator, and is driven by a driver module including an audio amplifier. The attenuation of the sound wave is reduced by preventing the sound diffusion with an enclosure surrounding a stove. The frequency of the sound wave is set to 50 Hz, and the sound pressure of 93 dBA is measured at the distance of 0.5 m. It takes maximum 8 and 15 seconds to suppress the flame from 7-cc and 14-cc flammable liquid, respectively, which corresponds to 24% and 42% of the natural extinguishing time. Since the proposed safe stove is non-toxic and leaves no residues over the conventional ones, it would combine with various home appliances to suppress early-stage fires and prevent fire expansion.

sound Velocity and Attenuation Coefficient in the Core Sediment of Deep-Sea Basin, East Sea of Korea (Sea of Japan) (동해 심해분지 시추퇴적물의 음속과 감쇠계수)

  • 김성렬;이용국
    • 한국해양학회지
    • /
    • v.26 no.1
    • /
    • pp.59-66
    • /
    • 1991
  • Laboratory studies were carried out to measure the sound velocity (V/SUB p/) and quality factor (Q/SUB p/, inverse attenuation) in the horizontal (H) and vertical (V) direction on the core sampled sediment of deep-sea basin (1,850 meter water depth), East Sea of Korea (Sea of Japan). Sampled core was about 250 cm long and 500 kHz ultrasonic p-wave transducer was used for a sound soured. V/SUB p/ varies from 1,480 m/sec to 1,500 m/sec, it is not clear which direction is faster, V/SUB PH/ or V/SUB pv/, within${\pm}$ 1.0% anisotropy (A/SUB p/). It is thought because the core sediment facies is highly (or slightly) bioturbated homogeneous mud with very high porosity (more than 80%). The general trend of Q/SUB p/ is decreasing 10 to 5 with the buried depth, it is strongly affected by the variation of sediment texture (increasing silt, decreasing clay) with increasing of CaCO$_3$ and organic matter content, But Q/SUB PH/ is jumping up to 14.9 near the bottom of core sediment as including volcanic ash richly. The relationship between V/SUB PH/ and Q/SUB PH/ shows the mirror image nearly, it is interpreted that not only the geotechnical properties and texture but also sea-water characteristics (high Q/SUB p/, low V/SUB p/) according to rich water content affect strongly in the upper part of the unconsolidated deep-sea basin sediment.

  • PDF

Analysis of Sound Attenuation by Chambers in Duct Systems by the Finite Element Method (유한요소법에 의한 소음기의 감음특성해석)

  • 최석주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.23-27
    • /
    • 1991
  • 각종 홀 (음악홀, 극장, 사무실건물)의 공조 덕트계에는 미로형소음챔버가 설 치되는 경우가 많다. 이러한 소음장치를 건물내부에 설치하는 경우에는 건물 설계단계에서부터 소음챔버로 인한 감음양(투과손실 : Transmission Loss)의 예측계산이 중요하다. 그렇지만, 일반적인 소음장치는 그 형상이나 내표면의 흡음조건이 아주 복잡하기 때문에, 현단계에서는 간단한 이론만으로 투과손 실예측이 거의 불가능하다. 지금까지 이 문제에 대해서 유한요소법(Finite Element Method : FEM)을 이용해 검토한 예가 종종 소개되었으나, 대부분 소음챔버의 입구와 출구에서의 임의의 점에 대한 음압비를 투과손실로서 구 하고 있다. 그러나, 소음기자체의 실질적인 투과손실특성을 알기 위해서는 소음기의 입력 파워에 대한 출력파워의 비로서 구하지 않으면 안된다. 따라 서, 본 연구에서는 유한요소법에 의한 복소음향인텐시티(Complex sound intensity)의 수치계산법을 각종소음기 (팽창형, 미로형)의 투과손실해석에 적 용하기 위하여 이론적인 면에서 고찰했으며, 프로그램도 개발하여 모델해석 에 적용하였다. 또한, 위에서 언급된 수치해석법의 타당성의 검증을 위하여, 측정에 의한 투과손실예측방법으로서 크로스스펙트럼(Cross Spectrum)법에 의한 음향인텐시티계측법의 이용에 대해서 이론적으로 고찰했으며, 그 이론 을 기초로 한 축척 모형실험을 병행하였다.

  • PDF

A STUDY ON THE INTERNAL DERANGEMENT OF TEMPOROMANDIBULAR JOINT BY COMPUTED TOMOGRAM (전산화 단층 촬영을 이용한 악관절 내장증에 관한 연구)

  • Cho Dae-Hee;Kim Jae-Duk
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.18 no.1
    • /
    • pp.67-73
    • /
    • 1988
  • This study was performed to clarify the mechanism of clicking sound and locking on temporomandibular joint and to determine the radiographic findings of them by using computed tomogram. Through the preliminary study with cadavers, the proper scanning condition and the correlatonship between the anatomy of cadaver and computed tomogram had been determined. The subjects were consisted of 10 controls and 16 patients having clicking sound or locking on temporomandibular joint. By using Hitachi-W500 as computed tomographic device, direct axial views and sagittal views reformed according to the changes in window setting and using the non-linear fraction were taken and analyzed by visual method and measuring the attenuation numbers. The obtained results were as follows: 1. The density of the anterior band of meniscus showed isodense to the surrounding muscles in normal. 2. In patient group, affected side showed increased radiopaque area anterior to condyle and underneath articular eminence as the feature of anteriorly displaced meniscus on axial and sagittal views. 3. In patient group, the condyle was rotated postero-laterally in affected side. 4. Non-linear fraction highlightened the feature of anteriorly displaced meniscus.

  • PDF

Acoustic modeling of an air cleaner filter in the engine intake system (자동차 흡기계 공기 여과기 필터의 음향학적 모델)

  • Ih, Jeong-Guon;Kang, Jang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.114-117
    • /
    • 2006
  • The air filter in engine intake system has a function of filtrating the dirt in the scavenging air as well as attenuating the noise. The noise attenuation within the air cleaner filter, however, has been regarded as negligible by the field engineers. In this paper, for the analysis of the acoustical performance of air filter, an acoustical model was suggested and the characteristics of air filter system were investigated. Fibrous structure of the filter element was modeled as a micro-perforated panel using the flow resistivity and porosity. The pleated geometry of the filter element was modeled as two coupled ducts that have permeable walls, in which each duct area was assumed being constant. Using such simplified geometry, a mathematical model was developed for the sound propagation within a narrow duct system. Visco-thermal effect was considered in modeling the sound propagation through such tubes; the filter box was modeled as a rigid rectangular box. By combining two models, a four-pole transfer matrix was derived. For the validation purpose, transmission loss was measured for a plastic rectangular box containing an air filter. A noticeable effect of the air filter element was observed by including the filter into the box. Comparing the predicted and measured data, we found that the predicted TL agrees well with experimental results, in particular, in magnitude and frequency at TL troughs.

  • PDF

Characteristics of the Functional Panel Made from Foamed Aluminum (발포알루미늄을 이용하여 제조한 기능성 판넬 특성 연구)

  • Kim, Jae-Yong;Um, Myeong-Heon;An, Dae-Hyun;Shim, Myeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.62-66
    • /
    • 2006
  • In this work, the properties of environmentally friendly functional panel made from waste aluminum were investigated. Product quality enhancement was pursued through an improved viscosity process, a mixing process by agitating, a foaming process, a cooling process, and a color addition process. An acoustic transmission attenuation test, a sound adsorption rate measurement test, and a foaming condition and scrap mixing test were implemented. As a result, the functional panel made from waste aluminum was ultra lightweight and had excellent properties such as soundproof, sound interception, and shielding harmful electromagnetic waves. Also, the functional panel showed low thermal conductivity (about 2.2 kcal/mh) and excellent heat-insulating property.

Acoustic Characteristics of Nitrile Butadiene Rubber with Carbon Black Content (카본 함량에 따른 니트릴 부타디엔 고무의 음향 특성)

  • Jung Kyungil;Yoon Suk Wang;Cho Kuk Young;Park Jung-ki
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.377-380
    • /
    • 2002
  • Acoustic Characteristics of Nitrile Butadiene Rubber with Carbon Black ContentAcoustic and mechanical properties of Nitrile Butadiene Rubbers (NBR) with the variation of the carbon black content were investigated. NBR where the acrylonitrile content is $33\%$ based on the mole percent has been prepared with fixed sulfur content for vulcanization. Acoustic measurement of the prepared rubbers were peformed in the frequency region of $300\;\~\;1000\;kHz$. Their mechanical properties such as density, hardness were also measured. Increase of the carbon black content in the rubber resulted in enhancement of the mechanical property and linear increase of the sound speed as function of the carbon black content. Interestingly, attenuation of the sound speed was only affected by the existence of the carbon black and not by the amount of carbon black in the experiment range of this article. In this study, it was found that the amount of carbon black content in the NBR was correlated with the acoustic properties and can be estimated nondestructively by the measurement of the specific acoustic property.

  • PDF