• Title/Summary/Keyword: Sound Power

Search Result 811, Processing Time 0.024 seconds

Estimation of Noise Level near Cross Bow Fan by Measurements of Static Pressure. (정압을 이용한 직교류팬 주변의 소음 예측)

  • Kim, Jae-Won;Cho, Yong;Jung, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1156-1161
    • /
    • 2001
  • A significant trial has been performed for estimation of noise level of a cross flow fan for air conditioning system. In general, measurements of noise level of machinery require rigorous equipment involving an anechoic chamber with precision gauges. The apparatus is expensive to utilize and is not easy to construct. In this work, we adopt static pressure sensing from an ordinary pressure transducer for prediction of noise level of a rotating fan. The present procedure is finding sound pressure from the static pressure by manipulating Light-Curle equation depicts noisy energy in terms of pressure on surfaces of noise generators. Sound power level near core unit of the fan is evaluated with the present methodology in a normal laboratory room without any sound absorbers. The method is easy and shows good prediction results compared with precise measurements by using microphones.

  • PDF

The Measurement and Prediction of Transmission loss through Dash Panel (대시 패널의 투과손실 측정 및 예측)

  • Kim, Jung-Soo;Kang, Yeon-June;Kim, Yoon-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.122-125
    • /
    • 2005
  • This study is an measurement and prediction of transmission loss through dash panel with multi-path in a vehicle. Measurement results of transmission loss are derided by sound power measured using the sound intensity method under locating a sound source in the anechoic room and reverberant room, respectively. Prediction one is decided by multi-path analysis of dash panel composed by a various part of materials and complicated shape. Finally, two results show a great agreement between measured and predicted transmission loss.

  • PDF

The Measurement of Firing Noise of K2 Rifle at Close Distance (근접 측정에 의한 K2 소총 사격음의 측정)

  • 이윤
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1123-1128
    • /
    • 2004
  • An experimental study on firing noise of K2 rifle was performed. Firing noises of K2 rifle were measured at close distance to rifle. Firing noise of K2 rifle which made in Korea, has not measured before. The measurement of firing noise at close distance is not simple, because the amplitude of firing noise is much bigger than the measuring limit of ordinary sound level meter even though it uses a signal attenuator. The measurement of firing noise at close distance is necessary for noise source positioning and for obtaining the sound power of K2 rifle. By this experimental study, the firing noise levels of K2 rifle at different positions are obtained and these data can be used to Predict the sound pressure level at any distance from muzzle of the rifle. Also these data can be used to calculate the threshold shift of gunner's ear.

Multi-Pulse Amplitude and Location Estimation by Maximum-Likelihood Estimation in MPE-LPC Speech Synthesis (MPE-LPC음성합성에서 Maximum- Likelihood Estimation에 의한 Multi-Pulse의 크기와 위치 추정)

  • 이기용;최홍섭;안수길
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.9
    • /
    • pp.1436-1443
    • /
    • 1989
  • In this paper, we propose a maximum-likelihood estimation(MLE) method to obtain the location and the amplitude of the pulses in MPE( multi-pulse excitation)-LPC speech synthesis using multi-pulses as excitation source. This MLE method computes the value maximizing the likelihood function with respect to unknown parameters(amplitude and position of the pulses) for the observed data sequence. Thus in the case of overlapped pulses, the method is equivalent to Ozawa's crosscorrelation method, resulting in equal amount of computation and sound quality with the cross-correlation method. We show by computer simulation: the multi-pulses obtained by MLE method are(1) pseudo-periodic in pitch in the case of voicde sound, (2) the pulses are random for unvoiced sound, (3) the pulses change from random to periodic in the interval where the original speech signal changes from unvoiced to voiced. Short time power specta of original speech and syunthesized speech obtained by using multi-pulses as excitation source are quite similar to each other at the formants.

  • PDF

Development of Automated Program for Noise Prediction in Shipboard Compartments (선내 격실 소음 추정 자동화 프로그램 개발)

  • Oh, Young-Keun;Park, Keun-Hyo;Ryu, Seong-Sun;Kang, Tae-Wook;Lee, Dong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.519-524
    • /
    • 2011
  • The aim of this study is to develop an automated program for noise prediction in shipboard compartments, for this purpose of calculating noise levels accurately and quickly. The program calculates sound power level at HVAC components based on the empirical method suggested by NEBB and utilizing the manufacturer's test data. The program developed uses the GUI functions to help in efficient modeling and calculation. To verify the reliability of developed program, the predicted data was compared with the measured data in shipboard compartments. As a result, the average difference between predicted and measured data is ${\pm}3dB$.

  • PDF

Comparison of Performance of Sound Insulation Panel for Transformer (변압기용 차음판의 성능 비교)

  • Jeong, H.E.;Choi, B.K.;Kim, H.J.;Gu, D.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1302-1305
    • /
    • 2006
  • Recently, demands for the reduction of noise generated by transformers have been increasing. Accordingly the noise of transformer occasion displeasing to residents therefore the transformer needs to decrease of noise. One method of reduction such a noise is to build a free-standing enclosure of concrete and steel plates around the transformer, however, this method has some disadvantages, for example, a lage area is needed for equipment installation. In the paper, the vibration and noise effect which is transferred from reinforce channel to insulation panel generated by transformer have been identified for the several kinds of insulation panel and damping sheet experimentally.

  • PDF

Transmission Loss Prediction of the High Speed Railway's Wall Section (고속철도 차량 벽면의 투과손실값 예측)

  • Kim, Kwan-Ju;Park, Jin-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.1-6
    • /
    • 2006
  • The purpose of this study is to calculate transmission loss of the high speed railway's wall section accurately. Transmission loss measurement of ideal case i.e. the wall in the laboratory condition was carried out in first, which results were compared with those by statistical energy method. Transmission loss values of high speed railway calculated out by experimental method are compared with those from closed form solution. Commercial statistical energy analysis was also used to predict the outside pressure level using those measured transmission loss values. Simple SEA model could estimate reasonable exterior sound pressure level.

A Study on an Acoustical Model for Gas Leak Detection in a Pipeline (배관계의 가스누설탐지를 위한 음향모델 연구)

  • Yang, Yoon-Sang;Lee, Dong-Hoon;Koh, Jae-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.2
    • /
    • pp.91-96
    • /
    • 2014
  • An acoustical model for detecting the leak location in a buried gas pipeline has been developed. This model is divided into an experimental model for sound diagnosis, and a theoretical model for sound prediction, which is based on the transfer matrix method, representing the sound pressure and the volume velocity as state variables. The power spectrum is measured by attaching only one microphone to the closed end pipe. It has been shown that the response magnitude of acoustic pressure signals calculated by the acoustical model depends upon the thickness and diameter of a pinhole. The validity for the acoustical model has been verified through a comparison between the measured and calculated results.

EXAMINATIONS OF METHOD FOR CALCULATING LAE OF HELICOPTER NOISE

  • Matsui, Toshihito;Park, Young-Min;Takagi, Koichi
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.668-673
    • /
    • 1994
  • The paper presents a simple method for calculating the sound exposure level (LAE) of helicopter noise. It is assumed that a helicopter is a nondirective point source and that A-weighted sound pressure level at an observation point can be expressed by an A-weighted power level and a simple function of the distance from the helicopter. We derived a formula for LAE by integrating the sound energy along a finite or an infinite flight segment. The values calculated form the formula agree well with the results of test flights in which three types of helicopters each were operated in three moving modes of approach, takeoff and level flyover.

  • PDF

Data Visualization of Site-Specific Underground Sounds

  • Tae-Eun, Kim
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.77-84
    • /
    • 2024
  • This study delves into the subtle sounds emanating from beneath the earth's surface to unveil hidden messages and the movements of life. It transforms these acoustic phenomena into digital data and reimagines them as visual elements. By employing Sismophone microphones and utilizing the FFT function in p5.js, it analyzes the intricate frequency components of subterranean sounds and translates them into various visual elements, including 3D geometric shapes, flowing lines, and moving particles. This project is grounded in the sounds recorded in diverse 'spaces of death,' ranging from the tombs of Joseon Dynasty officials to abandoned areas in modern cities. We leverage the power of sound to transcend space and time, conveying the concealed narratives and messages of forgotten places .Through the visualization of these sounds, this research blurs the boundaries between 'death' and 'life,' 'past' and 'present,' aiming to explore new forms of artistic expression and broaden perceptions through the sensory connection between sound and vision.