• Title/Summary/Keyword: Sound Level Prediction/Measurement

Search Result 25, Processing Time 0.023 seconds

A Study on Development of a Prediction Model for the Sound Pressure Level Related to Vehicle Velocity by Measuring NCPX Measurement (NCPX 계측 방법에 따른 속도별 소음 데시벨 예측 모델 개발에 대한 연구)

  • Kim, Do Wan;An, Deok Soon;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.21-29
    • /
    • 2013
  • PURPOSES : The objective of this study is to provide for the overall SPL (Sound Pressure Level) prediction model by using the NCPX (Noble Close Proximity) measurement method in terms of regression equations. METHODS: Many methods can be used to measure the traffic noise. However, NCPX measurement can powerfully measure the friction noise originated somewhere between tire and pavement by attaching the microphone at the proximity location of tire. The overall SPL(Sound Pressure Level) calculated by NCPX method depends on the vehicle speed, and the basic equation form of the prediction model for overall SPL was used, according to the previous studies (Bloemhof, 1986; Cho and Mun, 2008a; Cho and Mun, 2008b; Cho and Mun, 2008c). RESULTS : After developing the prediction model, the prediction model was verified by the correlation analysis and RMSE (Root Mean Squared Error). Furthermore, the correlation was resulted in good agreement. CONCLUSIONS: If the polynomial overall SPL prediction model can be used, the special cautions are required in terms of considering the interpolation points between vehicle speeds as well as overall SPLs.

A Study on the Computation and Application of Sound Power Level for Road Traffic Noise (도로교통소음 음향파워레벨 산정과 응용에 관한 연구)

  • 김득성;오진우;홍세화;이기정;장서일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.527-534
    • /
    • 2004
  • This study is a paper relating to between road traffic noise(RTN) and sound power level(PWL). At present to prediction of RTN is used to many experimental models and prediction methods. RTN is computed PWL using existing experimental models and prediction methods. Then, computed PWL is compared with it of measurement value, in them, it is selected model most similar to measurement value. And then, this results will watch for make Noise Map, as application field applied to computed results.

  • PDF

Prediction of Highway Traffic Noise-calculation of Sound Attenuation during Propagation (고속도로 교통소음 예측-전달감쇠 산정)

  • 조대승;김진형;최태묵;오정한;김성훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.236-242
    • /
    • 2002
  • This paper presents some advanced and supplemental methods to enhance the accuracy In case of calculating geometric divergence attenuation, attenuation by multiple screening structures, ground attenuation at unflat surfaces of sound during propagation outdoors by the methods specified in ISO 9613-2. Moreover, a calculation method for considering short-term wind effect, specified in ASJ Model-1998, is also introduced. To verity the accuracy of adopted methods, we have carried out highway traffic noise prediction and measurement at tile twelve locations appearing representative road shapes and structures, such as flat, retained cut, elevated, barrier-constructed roads. From the results, we have confirmed the predicted results show good correspondence with the measured at direct, diffracted and reflected sound fields within 30 m from the center of near side lane.

Prediction Method of Control Valve Noise (잔향실을 이용한 콘트롤 밸브 소음 예측 방법)

  • 이용봉;윤병로;박경암;이두희;유선학
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.8
    • /
    • pp.703-707
    • /
    • 2002
  • This paper proposes new method for predicting sound power emitted from the control valve and piping system. The sound power level measurement method using the reverberation chamber is much easy to apply in the field compared to the method using the anechoic chamber. Measured sound power was used to determine the coefficients of the equation predicting sound power level. The noise prediction equation was developed at relative flow coefficient, 0.11. The sound power level predicted is in good agreement with the measured value. Proposed method can be used to express the noise characteristics of the control valves.

Prediction and Measurement of Acoustic Loads Generated by KSR-III Propulsion System (KSR-III 로켓의 추진기관에 의한 음향 하중 예측 및 측정)

  • Park, Soon-Hong;Chun, Young-Doo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.853-856
    • /
    • 2002
  • Rocket propulsion systems generate very high-level noise (acoustic loads), which is due to supersonic jet emitted by rocket engine. In practice, the sound power level of rocket propulsion systems is over 180 dB. This high level noise excites rocket structures and payloads, so that it causes the structural failure and electronic malfunction of payloads. Prediction method of acoustic loads of rocket enables us to determine the safety of payloads. A popular prediction method is based on NASA SP-8072. This method was used to predict the acoustic loads of KSR-III rocket. Measurement of acoustic loads by KSR-III propulsion system was performed in the stage qualification test. The predicted results were compared with the measured ones.

  • PDF

Simplified method on measurement and evaluation of floor impact sound using impact ball (임팩트 볼에 의한 바닥충격음 측정 및 평가 간편법)

  • Kim, Yong-Hee;Lee, Sin-Young;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.631-635
    • /
    • 2006
  • In this study, simplified methods on measurement and evaluation of heavy-wight impact sound was proposed due to provide easy quality control method to construction engineers. The simplified methods include using of rubber impact ball instead of bang machine, reduced number of measuring and impact positions which is prescribed as over 4 points, using of hand-held sound level meter as a frequency analyser and prediction equation for $L_{i.Fmax.AW}$, single number rating, using $L_{Amax}$, and $L_{Lmax}$ at each frequency band. The results showed that a method of boundary driving and boundary measuring is the most similar to the current rating method.

  • PDF

Prediction of Strength and Propagation Characteristics of Supersonic Flight Sonic Boom (초음속 비행체의 소닉붐 강도와 전파 특성 예측)

  • Jung, Suk Young;Ha, Jae-hyoun;Lee, Younghwan;Jin, Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.497-504
    • /
    • 2020
  • A technique was developed for analysis on sonic boom created by supersonic flight and for prediction of its sound level and atmospheric propagation characteristics. It is of great importance to anticipate sound level of sonic boom because it causes environmental issue. For that purpose, the simplified sonic-boom prediction method was applied to calculate sound pressure according to physical properties and flight information of the object and distance to measurement site, in this study. Propagation characteristics of shock wave emanated from a flying object was analyzed by using line-of-sight vector and ray tracing method which dealt with refraction of wave due to atmospheric density distribution along altitude. Predicted results agreed well with measured data from real flight.

Transmission Loss Prediction of KHST's Wall Section (KHST 차량 벽면의 투과손실값 예측)

  • Kim, Kwan-Ju;Yoon, Tae-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.104-109
    • /
    • 2002
  • The purpose of this study is to calculate transmission loss of KHST passenger vehicle's wall section accurately Typical transmission loss measurement of wall in the laboratory condition was carried out in advance, which is easier than KHST. Transmission loss results were compared with those by statistical acoustic method. Transmission loss values of KHST calculated by experimental method are compared with those from closed form solution.

  • PDF

Prediction of Outdoor Sound Propagation under Envrionmental Change (환경변화의 영향을 고려한 소음예측기법)

  • Kim, Dong-Hyun;Han, Sang-Bo;Park, Sung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1865-1870
    • /
    • 2000
  • Sound propagation along the surface of the ground can be affected by the roughness of the ground surface and the direction of the wind. Noise Source parameter and ground factor are estimated using the measured results of two points under particular environmental condition, and the noise level of arbitrary points under the same environmental condition can be estimated. The results can be used for the prediction of the noise level from a source above a plain and homogeneous ground surface with no obstacles nearby. Upward and downward conditions are also addressed in addition to ground effect. The proposed method can be utilized to estimate the noise level of specific noise environment and its validity was confirmed with the results of actual field measurement.

  • PDF

Transmission Loss Prediction of the High Speed Railway's Wall Section (고속철도 차량 벽면의 투과손실값 예측)

  • Kim, Kwan-Ju;Park, Jin-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.1-6
    • /
    • 2006
  • The purpose of this study is to calculate transmission loss of the high speed railway's wall section accurately. Transmission loss measurement of ideal case i.e. the wall in the laboratory condition was carried out in first, which results were compared with those by statistical energy method. Transmission loss values of high speed railway calculated out by experimental method are compared with those from closed form solution. Commercial statistical energy analysis was also used to predict the outside pressure level using those measured transmission loss values. Simple SEA model could estimate reasonable exterior sound pressure level.