• Title/Summary/Keyword: Sound Element

Search Result 476, Processing Time 0.026 seconds

Finite Element Analysis for Sound Propagation Characteristics in a Duct Lined with Poroelastic Foams (유한요소해석을 통한 탄성폼이 대어진 덕트내의 소음전파 특성 해석)

  • Lee, Seung-Yup;Kang, Yeon-June
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.876-876
    • /
    • 2001
  • Axisymmetric finite element model is developed to determine sound propagation characteristics in a circular duct lined with a poroelastic foam. The foam and air models are derived based on the Biot's theory and the Helmholtz equation respectively and finally result in a quadratic eigenvalue problem in the wave number. Some cross sectional mode shapes are shown and sound attenuations and phase speeds of some acoustic modes are given. Those of fundamental modes are compared with those by forced response solutions and those from measurement results. The influence of lining thickness is also described on sound propagation characteristics.

  • PDF

The Noise Reduction Effect by the Enclosure of Gas Turbines (가스터빈 차폐막의 소음 저감효과에 관한 연구)

  • Park, Dae Hun;Shin, Yoo In;Park, Sung Gyu;Kim, Kang Il;Song, Chul Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.287-292
    • /
    • 2017
  • A gas turbine is the main equipment used in a combined heat and power plant. It generates a high sound pressure noise level. To reduce the noise level, an enclosure is installed around the turbine. The sound insulation performance of the enclosure affects the amount of external noise reduction. In this study, a sound transmission loss analysis is performed using the boundary element method to predict sound insulation performance according to the numbers and shapes of the supporter. Radiated noise analysis is also performed for the main external points of the enclosure using ray-acoustics. The results of these analyses are presented and a design plan is proposed that reduces the sound pressure noise level of the enclosure.

Finite Element Analysis of Sound Transfer Characteristics for Middle Ear (유한요소 모델을 이용한 중이의 소리전달 특성 해석)

  • Gal, Young-Min;Baek, Moo-Jin;Lee, Doo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1563-1571
    • /
    • 2011
  • In this study, we developed a finite element model of the human middle ear has been developed to calculate itsfor sound transfer characteristics calculation. We usedThe geometric data forof ossicles, obtained byfrom micro-CT scanning, was used in order to develop the middle- ear FE model. A right- side temporal bone of a Korean cadaver was used for the micro-CT scanning. The developed FE model includes three ossicles, the tympanic membrane, ligaments, and muscles. We calculated theA sound transfer function from the tympanic membrane to the stapes footplate was calculated. The sound transfer function calculated vias of the FE model shows good agreement with measured responses over the 10- kHz frequency band. To measureidentify the sensitivityies of the middle- ear function due to material property variation, we studied several parameters studies have been fulfilled using the middle ear FE model. TAs a result the stiffness property of the incudostapedial joint had the greatest influence onwas the most influential to the middle- ear sound transfer function among the parameters.

The Characteristics of the Popular Culture Contemporary Fashion Shows -Focus on Pret-a-Porter Collections after the Mid of 1990s- (현대패션쇼의 대중문화적 특성(제2보) -1990년대 중반이후 기성복컬렉션을 중심으로-)

  • 장안화;박민여
    • Journal of the Korean Society of Costume
    • /
    • v.54 no.5
    • /
    • pp.1-12
    • /
    • 2004
  • This Study has examined characteristics of the popular culture of the contemporary fashion show by each element as follows The fashion show place expanded its area when It moved its center because of not only the use of ordinary and public friendly place but also adjacent places post-modernism thought. The installation stage was produced by organic combination with the stage using object: The technology for the stage has produced dynamic variability and variety enough to expand the stage. The dramatic element of production technique was introduced to the fashion show to shorten gap with ordinary life and transfer a theme by facial expressions, gesture and pose. etc of a model In addition. its performance element combines other genre freely to be one time and viewers' participating type technique. At the minimalism element, clothing functions moderately as main factor of the fashion show: Technical elements are added to emphasize future Images. At sound tracks and sound effects, the show's overall atmosphere has been revived to remake various genre of music and improve images. At the fashion model, objective appearance boundary is collapsed to expand model concept and make tools of their own. The fashion show has external values of active movement of associated industry as well as economic boost enough to produce jobs, and internal values to provide aesthetic rest and satisfactions to let the ones. who are isolated from recreation values and the society, establish friendly relations with the society

A Study on the Sound Resonating Barrier (음향공명 방음벽 연구)

  • Lee, Jun-Shin;Kim, Tae-Ryong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.413-419
    • /
    • 2002
  • Noise barriers are widely used to reduce the sound level propagating from highways, railways or factories to residential areas. The reduced noise level at a receiver point is then determined by the diffracted waves around the edge of the barrier as well as by the transmitted waves through the barrier. 1'or proper usage, many studies either theoretical or experimental have been made with the objective of precisely Predicting the acoustic field and improving the noise attenuating properties of barriers. In this study. a simple scattering model. a line acoustic source scattered by an infinite cylinder, is introduced to simply Investigate the sound attenuation efficiency of a sound-resonating barrier. From this model study, it is observed that the sound-resonating harrier can be used as a good sound-shielding element especially for the pure-tone noise generated from the transformer. Large sound-attenuation is achieved by applying the sound-resonating barrier to the large transformers in a substation.

Study on the Vehicle Sound Based on the Formant Filter and Musical Harmonics (포먼트 필터와 음악 화성학에 기반한 차량 음질 연구)

  • Chang, Kyoung-Jin;Park, Dong Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.8
    • /
    • pp.525-531
    • /
    • 2015
  • Driving sound is an effective element to promote the product identity of a vehicle by providing customers with attractive sound which reflects the concept of a vehicle. Recently, major automakers are focusing on the target sound setting so that the sound can represent the brand image as well as the unique concept of a vehicle. In this study, a new method of target setting for the driving sound will be introduced based on using formant filter and musical harmonics characteristics. In addition, a target sound suggested from this method will be realized and verified by using active noise control in vehicle.

A Study on the Sound Resonating Barrier (음향공명 방음벽 연구)

  • 이준신;김태룡;손석만;박동수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.659-664
    • /
    • 2001
  • Noise barriers are widely used to reduce the sound level propagating from highways, railways or factories to residential areas. The reduced noise level at a receiver point is then determined by the diffracted waves around the edge of the barrier as well as by the transmitted waves through the barrier. For proper usage, many studies either theoretical or experimental have been made with the objective of precisely predicting the acoustic field and improving the noise attenuating properties of barriers. In this study, a simple scattering model, a line acoustic source scattered by an infinite cylinder, is introduced to simply investigate the sound attenuation efficiency of a sound-resonating barrier. From this model study, it is observed that the sound-resonating barrier can be used as a good sound-shielding element especially for the pure-tone noise generated from the transformer. Large sound-attenuation is achieved by applying the sound-resonating barrier to the large transformers in a substation.

  • PDF

Functional Analysis of Music Used in Film

Low frequency sound absorption improvement in refrigerator using multi perforated plate (다공판을 활용한 냉장고 저주파 흡음개선)

  • Ho-Jin, Kwon;Hyoung-Jin, Kim;Kyungjun, Song;Tae-hoon, Kim;Junhyo, Koo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.723-729
    • /
    • 2022
  • In this study, the multi perforated plate is used to reduce the compressor noise in the low frequency band inside the refrigerator machine room. To predict the sound absorption results, the impedance of the sound absorption material is measured. Using the measured impedance results, it is confirmed that the results used for FEM analysis is almost similar to the experimental values. The sound-absorbing structure that can operate in the target frequency band inside the refrigerator machine room is designed by controlling the hole diameter and arrangement in the perforated plate. The effect of reducing noise in the low frequency band is confirmed by applying perforated plate-based sound absorbing structures to the machine room.

The Error Involved in the Equivalent Electroacoustic Circuit Approach for the Element of Straight Pipe in Multiple Layer Perforated Plate Systems (다중 다공판 시스템에서 직관요소에 대한 전기음향등가회로법의 오류)

  • 이동훈;권영필
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.180-185
    • /
    • 2003
  • The equivalent electroacoustic circuit approach has been conventionally used for the analysis of the multiple layer perforated plate system. However, it is found that an analogy error has been involved in the equivalent electroacoustic approach proposed by previous researchers for the element of straight pipe. Although the pipe between the perforated layers is a distributed element in the analogy, it has been treated as a parallel element by previous investigators. The analogy error is demonstrated by comparing the calculated absorption coefficients based on the parallel circuit and the distributed circuit, respectively, with the measured values by the two-microphone impedance tube method.