DOI QR코드

DOI QR Code

Low frequency sound absorption improvement in refrigerator using multi perforated plate

다공판을 활용한 냉장고 저주파 흡음개선

  • Received : 2022.09.23
  • Accepted : 2022.11.01
  • Published : 2022.11.30

Abstract

In this study, the multi perforated plate is used to reduce the compressor noise in the low frequency band inside the refrigerator machine room. To predict the sound absorption results, the impedance of the sound absorption material is measured. Using the measured impedance results, it is confirmed that the results used for FEM analysis is almost similar to the experimental values. The sound-absorbing structure that can operate in the target frequency band inside the refrigerator machine room is designed by controlling the hole diameter and arrangement in the perforated plate. The effect of reducing noise in the low frequency band is confirmed by applying perforated plate-based sound absorbing structures to the machine room.

본 논문은 냉장고 기계실 내부 압축기의 저주파 대역에서 소음을 줄이기 위해 다공판을 사용하는 연구이다. 흡음 결과를 예측하기 위해 흡음재의 표면 임피던스를 측정하여, 측정된 임피던스 결과를 이용하여 Finite Element Method(FEM) 분석에 사용된 결과가 실험값과 거의 유사함을 확인하였다. 다공판의 구멍 직경과 배치를 조절하여 냉장고 기계실 내부의 목표 주파수 대역에서 동작할 수 있는 흡음구조를 설계하였다. 기계실에 다공판과 흡음재를 결합한 흡음구조를 적용하여 기존의 흡음재의 주파수 대역보다 낮아진 저주파대역 소음저감 효과를 확인하였다.

Keywords

Acknowledgement

본 논문은 교육부 산하 한국연구재단의 지원을 받아 연구되었음(NRF2020R1F1A1074404)

References

  1. A. Selamet and I. Lee, "Helmholtz resonator with extended neck," J. Acoust. Soc. Am. 113, 1975-1985 (2003). https://doi.org/10.1121/1.1558379
  2. E. Selamet, A. Selamet, A. Iqbal, and H. Kim, "Effect of flow on Helmholtz resonator acoustics: a three-dimensional computational study vs. experiments," SAE NVC Technical Paper, 14 (2011).
  3. A. Pelat, F. Gautier, S. C. Conlon, and F. Semperlotti, "The acoustic black hole: A review of theory and applications," J. Sound Vib. 476, 115316 (2020).
  4. L. Zhao, S. C. Conlon, and F. Semperlotti, "Broadband energy harvesting using acoustic black hole structural tailoring," Smart Mater. Struct. 23, 065021 (2014).
  5. C.-N. Wang and J.-H. Torng, "Experimental study of the absorption characteristics of some porous fibrous materials," Appl. Acoust. 62, 447-459 (2001). https://doi.org/10.1016/S0003-682X(00)00043-8
  6. Z. Xi, J. Zhu, H. Tang, Q. Ao, H. Zhi, J. Wang, and C. Li, "Progress of Application Researches of Porous Fiber Metals." Materials, 4, 816-824 (2011). https://doi.org/10.3390/ma4040816
  7. D.-Y. Maa, "Microperforated-panel wideband absorbers," Noise Control Eng. J. 29, 77-84 (1987). https://doi.org/10.3397/1.2827694
  8. D.-Y. Maa, "Potential of microperforated panel absorber," J. Acoust. Soc. Am. 104, 2861-2866 (1998). https://doi.org/10.1121/1.423870
  9. T. Herdtle, N. Kim, J. H. Alexander, R. W. Gerdes, T. Herdtle, "Transfer impedance of microperforated materials with tapered holes," J. Acoust. Soc. Am. 134, 4752-4762 (2013). https://doi.org/10.1121/1.4824968
  10. A. I. Mosa, A. Putra, R. Ramlan, A. A. Esraa "Wideband sound absorption of a double-layer microperforated panel with inhomogeneous perforation," Appl. Acoust. 161, 107167 (2020).
  11. Y. J. Qian, Y. J, Qian, D.Y. Kong, S. M. Liu, S.M. Sun, and Z. Zhao "Investigation on micro-perforated panel absorber with ultra-micro perforations," Appl. Acoust. 74, 931-935 (2013). https://doi.org/10.1016/j.apacoust.2013.01.009
  12. P. Cobo and F. Simon, "Multiple-layer microperforated panels as sound absorbers in buildings: A review," Buildings, 9, 53 (2019).
  13. B.-K. Hong, H. -Y. Song, S. -W. Seo, and D. H. Lee, A study on the sound absorptive characteristics and performance of parallel perforated plate systems," Trans. of the KSNVE, 15, 1003-1008 (2005). https://doi.org/10.5050/KSNVN.2005.15.9.1003
  14. J. Liu and D. W. Herrin, "Enhancing micro-perforated panel attenuation by partitioning the adjoining cavity," Appl. Acoust. 71, 120-127 (2010). https://doi.org/10.1016/j.apacoust.2009.07.016
  15. A. Putra and D. J. Thompson, "Sound radiation from perforated plates," J. Sound Vib. 329, 4227-4250 (2010). https://doi.org/10.1016/j.jsv.2010.04.020
  16. Y. Champoux and J. F. Allard, "Dynamic tortuosity and bulk modulus in air-saturated porous media," J. Appl. Phys.70, 1975-1979 (1991). https://doi.org/10.1063/1.349482
  17. D. L. Johnson, J. Koplik, and R. Dashen, "Theory of dynamic permeability and tortuosity in fluid-saturated porous media," J. Fluid Mech. 176, 379-402 (1987). https://doi.org/10.1017/S0022112087000727
  18. ASTM E 1050-19: ASTM International, Standard Test Method for Impedance and Absorption of Acoustical Materials using a Tube, Two Microphones and a Digital Frequency Analysis System, 2019.