• Title/Summary/Keyword: Sorption isotherm

Search Result 188, Processing Time 0.02 seconds

Assessment of the Adsorption Capacity of Cadmium and Arsenic onto Paper Mill Sludge Using Batch Experiment (회분식 실험을 통한 제지슬러지의 카드뮴 및 비소 흡착능 평가)

  • Baek, Jongchan;Yeo, Seulki;Park, Junboum;Back, Jonghwan;Song, Youngwoo;Igarashi, T.;Tabelin, C.B.
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.46-53
    • /
    • 2014
  • The purpose of this study is to promote utilization of paper mill sludge as an adsorbent for stabilizing heavy metals in contaminated water by measuring the adsorption capacity of paper mill sludge for cadmium and arsenic. To measure adsorption capacity of paper mill sludge, sorption isotherm experiments were analyzed by Langmuir and Freundlich isotherm models. Also, two methods of chemical modifications were applied to improve the adsorption capacities of paper-mill-sludge: the first method used sodium hydroxide (NaOH), called PMS-1, and the second method used the NaOH and tartaric acid ($C_4H_6O_6$) together, called PMS-2. For Cd adsorption, PMS-1 presented the increase of reactivity while PMS-2 presented the decline of reactivity compared to that of untreated paper-mill-sludge. In case of As adsorption, both PMS-1 and PMS-2 showed the decrease of adsorption capacities. This is because zeta-potential of paper mill sludge was changed to more negative values during chemical modification process due to the hydroxyl group in NaOH and the carboxyl group in $C_4H_6O_6$, respectively. Therefore, we may conclude that the chemical treatment process increases adsorption capacity of paper mill sludge for cation heavy metals such as Cd but not for As.

Remediation Technique for PCBs-and Phenols-Contaminated Soils by Surfactant-Enhanced Desorption (계면활성제 탈착촉진법을 이용한 폴리클로네이티드 바이페닐(PCBs)과 페놀류(Phenols)에 의하여 오염된 지반의 정화방안)

  • 박준범;윤현석;김준섭
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.241-257
    • /
    • 1999
  • Subsurface contamination of industrial hazardous organic substances is a serious social issue. Decomposing the hydrophobic organic compounds in the subsurface is technically difficult and the compounds can last as long-term contaminant sources of groundwater once they are sorbed on the soil. Although the danger of contaminated subsurface has long been recognized little was known about the effective remediation technique. Focusing on the remediation of the p-Cresol and 3, 5-Dichlorobiphenyl among subsurface contaminants, this paper studies the surfactant-enhanced desorption technique. Nonionic surfactant(Triton X-100) and anionic surfactant(SDS ) were used as desorbing solvents for extracting organic compound sorbed on soil particles. Sorption characteristics of soils and organic compounds were analyzed and the applications of surfactant solution were studied through batch tests and the flexible-wall permeameter tests. As a result of the sorption isotherm tests, a log-log linear relation was obtained between the linear-partition coefficient, $K_p$ and the octanol-water partition coefficient, $K_{ow}$ of each organic compound. The result of the batch test also showed that Triton X-100 at 0.5% of solution desorbs the 3, 5-Dichlorobiphenyl 28 times more than the water in the batch tests. The surfactant-enhanced subsurface remediation technique becomes more effective when the contaminants are hydrophobic and hard to be decomposed.

  • PDF

Biofilter Model for Robust Biofilter Design: 2. Dynamic Biofilter Model (강인한 바이오필터설계를 위한 바이오필터모델: 2. 동적 바이오필터모델)

  • Lee, Eun Ju;Song, Hae Jin;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.155-161
    • /
    • 2012
  • A dynamic biofilter model was suggested to integrate the effect of biofilter-medium adsorption capacity on the removal efficiency of volatile organic compound (VOC) contained in waste air. In particular, the suggested biofilter model is composed of four components such as biofilm, gas phase, sorption volume and adsorption phase and is capable of predicting the unsteady behavior of biofilter-operation. The process-lumping model previously suggested was limited in the application for the treatment of waste air since it was derived under the assumption that the adsorbed amount of VOC equilibrated with biofilter-media would be proportional to the concentration of dissolved VOC in the sorption volume of biofilter-media. Therefore a Freundlich adsorption isotherm was integrated into a robust biofilter process-lumping model applicable to a wide range of VOC concentration. The values of model parameters related to biofilter-medium adsorption were obtained from the dynamic adsorption column experiments in the preceding article and literature survey. Furthermore a separate biofilter experiment was conducted to treat waste air containing ethanol and the experimental result was compared with the model predictions with various values of Thiele modulus (${\phi}$). The obtained value of Thiele modulus (${\phi}$) was close to 0.03.

Cooking and Sorption Characteristics of Black Soybeans (검정콩의 조리(調理) 및 흡습성질(吸濕性質))

  • Shin, Ea-Sook;Kim, Chong-Kun;Zong, Moon-Shik;Kim, Woo-Jung
    • Applied Biological Chemistry
    • /
    • v.28 no.2
    • /
    • pp.51-55
    • /
    • 1985
  • Dried black soybeans were soaked in water at the temperature range of $4^{\circ}C{\sim}100^{\circ}C$ and in salt or sugar solution at $100^{\circ}C$ in order to investigate their effects on the cooking ratio and diffusion property of color pigments. As the temperature increased, the equilibrated absorbance at 490nm of soaking water after 120min was linearly increased. The activation energy for diffusion of color pigments were found to be 4.23 Kcal/mole at the range of $60^{\circ}C{\sim}100^{\circ}C$ and 8.31 kca1/mo1e at $4^{\circ}C{\sim}60^{\circ}C$. The cooking ratio, % cooked beans after heating, of black soybeans were more affected by the salt concentration that of sugar. Both concentrations reduced the cooking ratio as they increased. The sorption isotherm of Kongjaban showed a quite different curves between the storage at $4^{\circ}C$ and $25^{\circ}C$. The sorption and desorption rates during storage could be represented by the equation of $log({\frac{dw}{dt}}{\times}10^3))=alogt+logb$ with a very high correlation.

  • PDF

Shelf-life Estimation and Sorption Characteristics of Coated Ascorbic Acid by Fluidized Bed Coating (유동층 코팅 처리한 Ascorbic acid의 흡습특성 및 저장기간 예측)

  • Park, Su-Jung;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.15 no.3
    • /
    • pp.332-339
    • /
    • 2008
  • This study was performed to investigate the sorption characteristics and shelf-life of coated ascorbic acid Stability of ascorbic acid, which oxidizes easily during storage and processing, was achieved by applying a fluidized bed coating using Zein-DP and HPMC-FCC as covering materials. The monolayer moisture content calculated using the GAB equation showed a higher level of significance than when calculated using the BET equation. The fit to the isotherm curve was in the order of Halsey, Caurie, Oswin and Khun. The equilibrium relative humidity prediction model was established in terms of time and water activity, it had higher significance. The stability of the coated ascoribic acid during storage was investigated in terms of radical-scavenging activity, which decreased with increasing time of storage and was more affected at higher storage temperatures. The quality reduction rate constant (k) was calculated by a first-order reaction rate. The reaction rate constant increased with increasing storage temperature. The shelf-life of Zein-DP-coated ascorbic acid was estimated to be 45.83 days at 20C and 63.19 days at 10C, and the shelf-life for HPMC-FCC-coated ascorbic acid was estimated to be 28.84 days at 20C and 36.14 days at 10, the ascorbic acid was 24.52 days at $20^{\circ}C$ and 27.22 days at $10^{\circ}C$, respectively. Therefore, the fluidized bed coating effectively increased the stability of ascorbic acid.

The Uranium Removal in Groundwater by Using the Bamboo Charcoal as the Adsorbent (대나무 활성탄을 흡착제로 활용한 오염지하수 내 우라늄 제거)

  • Lee, Jinkyun;Kim, Taehyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.531-542
    • /
    • 2018
  • Batch sorption experiments were performed to remove the uranium (U) in groundwater by using the bamboo charcoal. For 2 kinds of commercialized bamboo charcoals in Korea, the U removal efficiency at various initial U concentrations in water were investigated and the optimal sorption conditions to apply the bamboo charcoal were determined by the batch experiments with replicate at different pH, temperature, and reaction time conditions. From results of adsorption batch experiments, the U removal efficiency of the bamboo charcoal ranged from 70 % to 97 % and the U removal efficiency for the genuine groundwater of which U concentration was 0.14 mg/L was 84 %. The high U removal efficiency of the bamboo charcoal maintained in a relatively wide range of temperatures ($10{\sim}20^{\circ}C$) and pHs (5 ~ 9), supporting that the usage of the bamboo charcoal is available for U contaminated groundwater without additional treatment process in field. Two typical sorption isotherms were plotted by using the experimental results and the bamboo charcoal for U complied with the Langmuir adsorption property. The maximum adsorption concentration ($q_m:mg/g$) of A type and C type bamboo charcoal in the Langmuir isotherm model were 200.0 mg/g and 16.9 mg/g, respectively. When 2 g of bamboo charcoal was added into 100 mL of U contaminated groundwater (0.04 ~ 10.8 mg/L of initial U concentration), the separation factor ($R_L$) and the surface coverage (${\theta}$) maintained lower than 1, suggesting that the U contaminated groundwater can be cleaned up with a small amount of the bamboo charcoal.

The Cesium Removal Using a Polysulfone Carrier Containing Nitric Acid-treated Bamboo Charcoal (질산으로 표면처리한 대나무 활성탄을 첨가한 폴리술폰 담체의 세슘제거 효율 규명)

  • Rahayu, Ni Wayan Sukma Taraning;Kim, Seonhee;Tak, Hyunji;Kim, Kyeongtae;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.529-542
    • /
    • 2020
  • The cesium (Cs) sorption characteristics of a bead-type polysulfone carrier contained HNO3-treated bamboo charcoal (3 - 5 mm in diameter) in water system were investigated and its Cs removal efficiency as an adsorbent from water was also identified by various laboratory experiments. From the results of batch sorption experiments, the bead-type polysulfone carrier with only 5% HNO3-treated bamboo charcoal (P-5NBC) represented the high Cs removal efficiency of 57.8% for 1 hour sorption time. The Cs removal efficiency of P-5NBC in water after 24 hours reaction maintained > 69% at a wide range of pH and temperature conditions, attesting to its applicability under various water systems. Batch sorption experiments were repeated for P-5NBC coated with two cultivated microorganisms (Pseudomonas fluorescens and Bacillus drentensis), which were typical indigenous species inhabited in soil and groundwater. The Cs removal efficiency for two microorganisms coated polysulfone carrier (BP-5NBC) additionally increased by 19% and 18%, respectively, compared to that of only P-5NBC without microorganisms coated. The average Cs desorption rate of P-5NBC for 24 h was lower than 16%, showing the Cs was stably attached on HNO3-treated bamboo charcoal in so much as its long-term use. The maximum Cs sorption capacity (qm) of P-5NBC calculated from the Langmuir isotherm model study was 60.9 mg/g, which was much higher than those of other adsorbents from previous studies for 1 h sorption time. The results of continuous column experiments showed that the P-5NBC coated with microorganisms packed in the column maintained > 80% of the Cs removal efficiency during 100 pore volumes flushing. It suggested that only 14.7 g of P-5NBC (only 0.75 g of HNO3 treated bamboo charcoal included) can successfully clean-up 7.2 L of Cs contaminated water (the initial Cs concentration: 1 mg/L; the effluent concentration: < 0.2 mg/L). The present results suggested that the Cs contaminated water can be successfully cleaned up by using a small amount of the polysulfone carrier with HNO3-treated bamboo charcoal.

Adsorption of Heavy Metals by Natural Adsorbents of Green Tea and Ginseng Leaves (녹차잎과 인삼잎의 중금속 흡착능 평가 연구)

  • Kim, Sohyun;Song, Jinyoung;Yoon, Kwangsuk;Kang, Eunmi;Song, Hocheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.128-134
    • /
    • 2017
  • This work presents the adsorption capability of green tea and ginseng leaves to adsorb heavy metals such as Cd(II), Cu(II), and Pb(II) in aqueous solution. FT-IR analysis indicates the presence of oxygen containing functional groups (carboxyl groups) in two kinds of leaves. High pH condition was favorable to the adsorption of heavy metal ions due to the enhanced electrostatic attraction and the precipitation reaction of metal ions. The adsorption of Cd(II), Cu(II), and Pb(II) reached equilibrium within 10 min, achieving high removal efficiencies of 80.3-97.5%. The adsorption kinetics data of heavy metal ions were fitted well with the pseudo-second-order kinetic model. The maximum adsorption amounts of Cd(II), Cu(II), and Pb(II) ions were 8, 3.5, and 15 mg/g, respectively, in the initial concentration range from 0.15 to 0.75 mM. Based on the fitting data obtained from isotherm models, heavy metal adsorption by green tea and ginseng leaves could occur via multi-layer sorption.

Applicability Assessment of Steel Slag as Reactive Capping Material for Blocking Phosphorus Release from Marine Sediment (해양 퇴적물에서 인 용출 차단을 위한 반응성 피복 소재로서 제강슬래그의 적용성 검토)

  • Jo, Sung-Wook;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.11-17
    • /
    • 2014
  • We investigated the applicability of steel slag as a capping material in order to minimize phosphorus(P) release into seawater. Steel slag is a byproduct from the iron and steel industries and the use of steel slag has some advantages in respect of both cost and environmental concern. P removal by steel slag were studied in a batch system with respect to changes in contact time and initial concentration. Kinetic adsorption data were described well by pseudo 2nd order model, indicating rate limiting step for P adsorption to steel slag is chemical sorption. Equilibrium adsorption data fitted well to Langmuir isotherm model which describes for single layer adsorption. The maximum P adsorption capacity of steel slag was 7.134 mg-P/L. Increasing the depth of steel slag produced a positive effect on interruption of P release. More than 3 cm of steel slag was effective for blocking P release and 5 cm of steel slag was recommended as the depth for capping of P contaminated marine sediments. Increasing P concentration and flow rate had a negative effect on P removal ratio. It was concluded that the steel slag has a potential capping material for blocking P release from marine sediments.

The adsorption-desorption behavior of strontium ions with an impregnated resin containing di (2-ethylhexyl) phosphoric acid in aqueous solutions

  • Kalal, Hossein Sid;Khanchi, Ali Reza;Nejatlabbaf, Mojtaba;Almasian, Mohammad Reza;Saberyan, Kamal;Taghiof, Mohammad
    • Advances in environmental research
    • /
    • v.6 no.4
    • /
    • pp.301-315
    • /
    • 2017
  • An Amberlite XAD-4 resin impregnated with di(2-ethylhexyl)phosphoric acid was prepared and its adsorption-desorption behaviors with Sr(II) ions under various conditions was examined. The resin was characterized by fourier transform infrared and thermal analysis techniques. The effects contact time, temperature, pH, interfering ions and eluants were studied. Results showed that adsorption of Sr (II) well fitted with pseudo-second-order kinetic model. The equilibrium adsorption data of Sr (II) on the impregnated resin were analyzed by Jossens, Weber-van Vliet, Redlich-Peterson and Fritz-Schlunder models to find out desirable equilibrium condition. Among them, the Fritz-Schlunder model best fitted to the experimental data. The maximum sorption capacity of impregnated resin amounted to 0.45 mg/ g at pH 8.0 and $20^{\circ}C$.