DOI QR코드

DOI QR Code

The Cesium Removal Using a Polysulfone Carrier Containing Nitric Acid-treated Bamboo Charcoal

질산으로 표면처리한 대나무 활성탄을 첨가한 폴리술폰 담체의 세슘제거 효율 규명

  • Rahayu, Ni Wayan Sukma Taraning (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Kim, Seonhee (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Tak, Hyunji (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Kim, Kyeongtae (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Lee, Minhee (Department of Earth Environmental Sciences, Pukyong National University)
  • ;
  • 김선희 (부경대학교 지구환경과학과) ;
  • 탁현지 (부경대학교 지구환경과학과) ;
  • 김경태 (부경대학교 지구환경과학과) ;
  • 이민희 (부경대학교 지구환경과학과)
  • Received : 2020.08.22
  • Accepted : 2020.10.13
  • Published : 2020.10.28

Abstract

The cesium (Cs) sorption characteristics of a bead-type polysulfone carrier contained HNO3-treated bamboo charcoal (3 - 5 mm in diameter) in water system were investigated and its Cs removal efficiency as an adsorbent from water was also identified by various laboratory experiments. From the results of batch sorption experiments, the bead-type polysulfone carrier with only 5% HNO3-treated bamboo charcoal (P-5NBC) represented the high Cs removal efficiency of 57.8% for 1 hour sorption time. The Cs removal efficiency of P-5NBC in water after 24 hours reaction maintained > 69% at a wide range of pH and temperature conditions, attesting to its applicability under various water systems. Batch sorption experiments were repeated for P-5NBC coated with two cultivated microorganisms (Pseudomonas fluorescens and Bacillus drentensis), which were typical indigenous species inhabited in soil and groundwater. The Cs removal efficiency for two microorganisms coated polysulfone carrier (BP-5NBC) additionally increased by 19% and 18%, respectively, compared to that of only P-5NBC without microorganisms coated. The average Cs desorption rate of P-5NBC for 24 h was lower than 16%, showing the Cs was stably attached on HNO3-treated bamboo charcoal in so much as its long-term use. The maximum Cs sorption capacity (qm) of P-5NBC calculated from the Langmuir isotherm model study was 60.9 mg/g, which was much higher than those of other adsorbents from previous studies for 1 h sorption time. The results of continuous column experiments showed that the P-5NBC coated with microorganisms packed in the column maintained > 80% of the Cs removal efficiency during 100 pore volumes flushing. It suggested that only 14.7 g of P-5NBC (only 0.75 g of HNO3 treated bamboo charcoal included) can successfully clean-up 7.2 L of Cs contaminated water (the initial Cs concentration: 1 mg/L; the effluent concentration: < 0.2 mg/L). The present results suggested that the Cs contaminated water can be successfully cleaned up by using a small amount of the polysulfone carrier with HNO3-treated bamboo charcoal.

질산으로 표면 처리한 대나무 활성탄을 소량 첨가한 구형의 폴리술폰 담체(직경 3 - 5 mm)를 제조한 후, 세슘(Cesium: Cs) 오염수를 대상으로 다양한 실내 실험을 수행하여 담체의 세슘 흡착 특성과 Cs 제거효율을 규명하였다. 배치실험 결과, 질산처리한 대나무 활성탄 5%를 첨가하여 제조한 폴리술폰 담체(P-5NBC)는 수 시간 내에 흡착평형에 도달하였고, 1시간 흡착시간 동안 57.8%의 Cs 제거효율을 나타내었다. 흡착시간이 24시간인 경우에는 오염수의 온도와 pH가 비교적 넓은 범위에서도 P-5NBC의 Cs 제거효율이 69%이상을 유지하여, 다양한 수환경 조건에서 Cs 제거를 위해 적용이 가능할 것으로 판단되었다. 토양과 지하수에 서식하는 대표 미생물종인 Pseudomonas fluorescens와 Bacillus drentensis를 배양하여 P-5NBC 표면에 도포한 경우, 미생물을 도포하지 않은 기존 P-5NBC보다 Cs 제거효율은 각각 19%와 18% 증가하였다. P-5NBC의 평균 Cs 탈착율은 16% 이하를 나타내어, Cs가 폴리술폰 담체에 포함된 질산처리한 대나무 활성탄에 안정적으로 결합하고 있었다. 두 종류의 미생물로 도포한 P-5NBC로 충진하여 연속 칼럼실험을 수행한 결과, 100 공극체적량을 처리하는 동안 Cs 제거효율은 80%이상을 유지하였으며, 이러한 결과는 14.7 g의 P-5NBC 만으로(담체 내 순수 대나무 활성탄량: 0.75 g) 7.2 L의 오염수 (오염수 초기 Cs 농도: 1 mg/L; 처리수 Cs 농도: < 0.2 mg/L)를 성공적으로 처리하였음을 의미한다. 1시간 동안 반응시킨 Cs 흡착 배치실험 결과를 대표적인 Langmuir 흡착등온선에 도시한 결과, P-5NBC의 최대 Cs 흡착농도(qm: mg/g)값은 60.9 mg/g으로, 기존 선행 연구들에서 사용한 다른 흡착제들보다 높았다. 본 연구를 통하여 소량의 P-5NBC 구형 담체를 이용하여 다양한 수환경에서 Cs를 성공적으로 제거할 수 있을 것으로 기대한다.

Keywords

References

  1. Ahn, J. and Lee, M. (2018) Sorption efficiency of the bamboo charcoal to remove cesium in the contaminated water system. Econ. Environ. Geol., v.51, no.2, p.87-97. https://doi.org/10.9719/EEG.2018.51.2.87
  2. Alamudy, H.A. and Cho, K. (2018) Selective adsorption of cesium from an aqueous solution by a montmorilloniteprussian blue hybrid. Chem. Eng. J., v.349, p.595-602 https://doi.org/10.1016/j.cej.2018.05.137
  3. Arifi, A. and Hanafi, H.A. (2011) Adsorption of cesium, thallium, strontium and cobalt radionuclides using activated carbon. Asian J. Chem., v.23 (1), p.111-115.
  4. Awual, M.R., Suzuki, S., Taguchi, T., Shiwaku, H., Okamoto, Y. and Yaita, T. (2014) Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents. Chem. Eng. J., v.242, p.127-135. https://doi.org/10.1016/j.cej.2013.12.072
  5. Bai, R.S. and Abraham, E. (2003) Studies on chromium (VI) adsorption-desorption using immobilized fungal biomass. Bioresource Technology., v.87, p.17-26. https://doi.org/10.1016/S0960-8524(02)00222-5
  6. Caccin, M., Giacobb, F., Ros, M.D., Besozzi, L. and Mariani, M. (2013) Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. J. Radional. Nucl. Chem., v.297, p.9-18. https://doi.org/10.1007/s10967-012-2305-x
  7. Chien, C.C., Huang, Y.P., Wang, W.C., Chao, J.H. and Wei, Y.Y. (2011) Efficiency of moso bamboo charcoal and activated carbon for adsorbing radioactive iodine. Clean - Soil, Air, Water., v.39, p.103-108. https://doi.org/10.1002/clen.201000012
  8. Dechojarassri, D., Asaina, S., Omote, S., Nishida, K., Furuike, T. and Tamura, H. (2017) Adsorption and desorption behaviors of cesium on rayon fibers coated with chitosan immobilized with Prussian blue. Int. J. Biol. Macromol., v.104, p.1509-1516. https://doi.org/10.1016/j.ijbiomac.2017.03.056
  9. DeMeuse, M.T. (2014) Polysulfones as a reinforcement in high temperature polymer blends. High Temperature Polymer Blends., p.165-173.
  10. Deng, H., Li, Y., Huang, Y., Ma, X., Wu, L. and Cheng, T. (2016) An efficient composite ion exchanger of silica matrix impregnated with ammonium molybdophosphate for cesium uptake from aqueous solution. Chem. Eng., J., v.286, p.25-35.
  11. Ding, S., Zhang, L., Li, Y. and Hou, L. (2019) Fabrication of a novel polyvinylidene fluoride membrane via binding $SiO_{2}$ nanoparticles and a copper ferrocyanide layer onto a membrane surface fors elective removal of cesium. J. Hazard. Mater., v.368, p.292-299. https://doi.org/10.1016/j.jhazmat.2019.01.065
  12. Ding, Y. and Bikson, B. (2010) Macro and meso porous polymeric materials from miscible polysulfone/polyimide blends by chemical decomposition of polyimide. Polymer., v.51, p.46-52. https://doi.org/10.1016/j.polymer.2009.11.043
  13. Falyouna, O., Eljamal, O., Maamoun, I., Tahara, A. and Sugihara, Y. (2020) Magnetic zeolite synthesis for efficient removal of cesium in a lab-scale continuous treatment system. J. Colloid Interface Sci., v571, p.66-79. https://doi.org/10.1016/j.jcis.2020.03.028
  14. Fang, L., Wei, X., Cai, P., Huang, Q., Chen, H., Liang, W. and Rong, X. (2011) Role of extracellular polymeric substances in Cu (II) adsorption on Bacillus subtilis and Pseudomonas putida. Bioresour. Technol., v.102, p.1137-1141. https://doi.org/10.1016/j.biortech.2010.09.006
  15. Fu, J.W., Wen, T., Wang, Q., Zhang, X.W., Zeng, Q.F., Shu- Qing An, S.Q. and Zhu, H.L. (2010) Degradation of Active Brilliant Red X-3B by a microwave discharge electrodeless lamp in the presence of activated carbon. J. Environ. Tech., v.6, p.1-20.
  16. Furuya, K., Hafuka, A., Kuroiwa, M., Satoh, H., Watanabe, Y. and Yamamura, H. (2017) Development of novel polysulfone membranes with embedded zirconium sulfate-surfactant micelle mesostructure for phosphate recovery from water through membrane filtration. Water Res., v.124, p.521-526. https://doi.org/10.1016/j.watres.2017.08.005
  17. Gad, S.C. and Pham, T. (2014) Cesium, Encyclopedia of Toxicology. Third Edition. Elsevier., p.776-778.
  18. Godiya, C.B., Cheng, X., Deng, G., Li, D. and Lu, X. (2019) Silk fibroin/polyethylenimine functional hydrogel for metal ion adsorption and upcycling utilization. J. Environ. Chem. Eng., v.7, p.102806. https://doi.org/10.1016/j.jece.2018.11.050
  19. Hameed, B.H., Din, A.T.M. and Ahmad, A.L. (2007) Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. J. Hazard. Mater., v.141, p.819-825. https://doi.org/10.1016/j.jhazmat.2006.07.049
  20. Iwanade, A., Kasai, N., Hoshina, H., Ueki, Y., Saiki, S. and Seko, N. (2012) Hybrid grafted ion exchanger for decontamination of radioactive cesium in Fukushima Prefecture and other contaminated areas. J. Radioanal. Nucl. Chem., v.293, p.703-709. https://doi.org/10.1007/s10967-012-1721-2
  21. Jeon, C. (2016) Removal of cesium ions from aqueous solutions using immobilized nickel hexacyanoferratesericite beads in the batch and continuous processes. J. Ind. Eng. Chem., v.40, p.93-98. https://doi.org/10.1016/j.jiec.2016.06.010
  22. Kang, S.M., Jang, S.C., Heo, N.S., Oh, S.Y., Cho, H.J., Rethinasabapathy, M., Vilian, A.T.E., Han, Y.K., Roh, C. and Huh, Y.S. (2017) Cesium-induced inhibition of bacterial growth of Pseudomonas aeruginosa PAO1 and their possible potential applications for bioremediation of wastewater. J. Hazard. Mater., v.338, p.323-333. https://doi.org/10.1016/j.jhazmat.2017.05.050
  23. Katsenovich, Y., Carvajal, D., Guduru, R., Lagos, L. and Li, C.Z. (2013) Assessment of the Resistance to Uranium (VI) Exposure by Arthrobacter sp. Isolated from Hanford Site Soil. Geomicrobiol. J., v.30, p.120-130. https://doi.org/10.1080/01490451.2011.654376
  24. Khandaker, S., Kuba, T., Kamida, S. and Uchikaawa, Y. (2017) Adsorption of cesium from aqueous solution by raw and concentrated nitric acid-modified bamboo charcoal. J. Environ. Chem. Eng., v.5, p.1456-1464. https://doi.org/10.1016/j.jece.2017.02.014
  25. Lalhruaitluanga, H., Jayaram, K., Prasad, M.N.V. and Kumar, K.K. (2010) Lead(II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo)-A comparative study. J. Hazard. Mater., v.175, p.311-318. https://doi.org/10.1016/j.jhazmat.2009.10.005
  26. Lee, J., Kim, T. and Lee, M. (2018) The uranium removal in groundwater by using the bamboo charcoal as the adsorbent. Econ. Environ. Geol., v.51, p.531-542. https://doi.org/10.9719/EEG.2018.51.6.531
  27. Li, X., Ding, C., Liao, J., Lan, T., Li, F., Zhang, D., Yang, J., Yang, Y., Luo, S., Tang, J. and Liu, N. (2014) Biosorption of uranium on Bacillus sp. dwc-2: preliminary investigation on mechanism. J. Environ. Radioact., v.135, p.6-12. https://doi.org/10.1016/j.jenvrad.2014.03.017
  28. Lin, Y.Z., Hwang G.S. and Wang I.S. (2003) Introduction to production and utilization of bamboo charcoal. Forest Tech. Report., v.10 (3), p.31.
  29. Liu, X., Ao, H., Xiong, X., Xiao, J. and Liu, J. (2012) Arsenic removal from water by iron-modified bamboo charcoal. Water. Air. Soil Pollut., v.223, p.1033-1044. https://doi.org/10.1007/s11270-011-0921-7
  30. Lo, S.F., Wang, S.Y., Tsai, M.J. and Lin, L.D. (2012) Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chem. Eng. Res. Des., v.90, p.1397-1406. https://doi.org/10.1016/j.cherd.2011.11.020
  31. Majidnia, Z. and Idris. A. (2015) Evaluation of cesium removal from radioactive wastewater using maghemite PVA-alginate beads. Chem. Eng. J., v.262, p.372-282. https://doi.org/10.1016/j.cej.2014.09.118
  32. Mbareck, C., Nguyen, Q.T., Alaoui, O.T. and Barillier, D. (2009) Elaboration, characterization and application of polysulfone and polyacrylic acidblends as ultrafiltration membranes for removal of some heavy metals from water. J. Hazard. Mater., v.171, p.93-101. https://doi.org/10.1016/j.jhazmat.2009.05.123
  33. Ofomaja, A.E., Pholosi, A. and Naido, E.B. (2015) Application of raw and modified pine biomass material for cesium removal from aqueous solution. Ecol. Eng., v.82, p.258-266. https://doi.org/10.1016/j.ecoleng.2015.04.041
  34. Ohta, T., Mahara, Y., Kubota, T., Fukutani, S., Fujuwara, K., Takamiya, K., Yoshinaga, H., Mizuochi, H. and Igarashi, T. (2012) Prediction of groundwater contamination with 137Cs and 131I from the Fukushima nuclear accident in the Kanto district. J. Environ. Radioact., v.111, p.38-41. https://doi.org/10.1016/j.jenvrad.2011.11.017
  35. Park, S.M., Alessi, D.S. and Baek, K. (2019) Selective adsorption and irreversible fixation behavior of cesium onto 2:1 layered clay mineral: A mini review. J. Hazard. Mater., v.369, p.569-576. https://doi.org/10.1016/j.jhazmat.2019.02.061
  36. Rahayu, N.W.S.T., Park, J., Yang, M., Wang, S. and Lee, M. (2020) Cesium removal from a water system using a polysulfone carrier containing nitric acid-treated bamboo charcoal. J. Environ. Radioact., In press.
  37. Seaton, K., Little, L., Tate, C., Mohseni, R., Roginskaya, M., Povazhniy, V. and Vasiliev, A. (2017) Adsorption of cesium on silica gel containing embedded phosphotungstic acid. Microporous Mesoporous Mater., p.55-56.
  38. Shokri, E., Yegani, R., Pourabbas, B. and Kazemian, N. (2016) Preparation and characterization of polysulfone/organoclay adsorptive nanocomposite membrane for arsenic removal from contaminated water. Appl. Clay Sci., v.132-133, p.611-620. https://doi.org/10.1016/j.clay.2016.08.011
  39. Tan, Z., Niu, G. and Chen, X. (2015). Removal of elemental mercury by modified bamboo carbon. Chin. J. Chem. Eng., v.23, p.1875-1880. https://doi.org/10.1016/j.cjche.2015.09.001
  40. Tao, Q., Zhang, X., Prabaharan, K. and Dai, Y. (2019) Separation of cesium from wastewater with copper hexacyanoferrate film in an electrochemical system driven by microbial fuel cells. Bioresour. Technol., v.278, p.456-459. https://doi.org/10.1016/j.biortech.2019.01.093
  41. Tran, H.N., You, S.J,, Bandegharaei, A.H. and Chao, H.P. (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res., v.120, p.88-16 https://doi.org/10.1016/j.watres.2017.04.014
  42. Wang, J. and Zhuang, S. (2020) Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes. Nucl. Eng. Technol., v.52, p.328-336. https://doi.org/10.1016/j.net.2019.08.001
  43. Wang, J., Zhuang, S. and Liu, Y. (2018) Metal hexacyanoferrates-based adsorbents for cesium removal. Coord. Chem. Rev., v.374, p.430-438. https://doi.org/10.1016/j.ccr.2018.07.014
  44. Wang, Y., Wang, X., Wang, X., Liu, M., Yang, L., Wu, Z., Xia, S. and Zhao, J. (2012) Adsorption of Pb(II) in aqueous solutions by bamboo charcoal modified with $KMnO_{4}$ via microwave irradiation. Colloids Surf. A: Physicochem. Eng. Asp., v.414, p.1-8. https://doi.org/10.1016/j.colsurfa.2012.08.007
  45. Wang, S.Y., Tsai, M.H., Lo, S.F. and Tsai, M.J. (2008) Effects of manufacturing conditions on the adsorption capacity of heavy metal ions by Makino bamboo charcoal. Bioresource Technology, v.99, p.7027-7033. https://doi.org/10.1016/j.biortech.2008.01.014
  46. WNA (World Nuclear Association). (2017) Fact and figures in reactor database. Annual Report (by https://www.world-nuclear.org/information-library).
  47. Yang, H., Li, H., Zhai, J., Sun, L., Zhao, Y. and Yu, H. (2014) Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil. Chem. Eng. J., v.246, p.10-19. https://doi.org/10.1016/j.cej.2014.02.060
  48. Zhang, J.F., Yang, L.R., Dong, T.T., Pan, F., Xing, H.F. and Liu, H.Z. (2018) Kinetics-Controlled Separation Intensification for Cesium and Rubidium Isolation from Salt Lake Brine. Ind. Eng. Chem. Res., v.57, p.4399-4406. https://doi.org/10.1021/acs.iecr.7b04820
  49. Zhao, C., Liu, J., Li, X., Li, F., Tu, H., Sun, Q., Liao, J., Yang, J., Yang, Y. and Liu, N. (2016) Biosorption and bioaccumulation behavior of uranium on Bacillus sp. dwc-2: investigation by box-Behenken design method. J. Mol. Liq., v.221, p.156-165. https://doi.org/10.1016/j.molliq.2016.05.085
  50. Zheng, X., Dou, J., Yuan, J., Qin, W., Hong, X. and Ding, A. (2017) Removal of $Cs^+$ from water ands oil by ammonium-pillaredmontmorillonite/Fe3O4 composite. J. Environ. Sci., v.56, p.12-24. https://doi.org/10.1016/j.jes.2016.08.019