• Title/Summary/Keyword: Sonic Jet

Search Result 60, Processing Time 0.029 seconds

Enhancement of Mixing in an Underexpanded Sonic Jet by an Elliptic Jet Screech Reflector (과소팽창 음속 제트에서 타원형상의 제트 스크리치 반사판을 이용한 혼합증진)

  • Kim Jung Hoon;Kim Jin-Hwa;Yoo Jung Yul
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.221-224
    • /
    • 2002
  • A technique of mixing enhancement in an underexpanded sonic round jet is studied with fully expanded jet Mach number 1.5. Tonal sound, jet screech can be produced at some underexpansion pressure ratio in a sonic jet. Since the jet screech excites the initial Jet shear layer to change the flow, a reflector which focuses the jet screech near the nozzle lip is designed. The reflector has an elliptic shape of which two foci are located near the nozzle lip and the jet screech source region. Jet screech tone near the nozzle lip increases with the elliptic reflector and spreading of the jet largely increases. It is concluded that mixing enhancement of the jet with the elliptic reflector is attributed to large scale structures which are initially excited by the increased jet screech.

  • PDF

The Influence of the Supply Chamber Configuration on Under-Expanded Swirling Jets (노즐 챔버 형상이 부족팽창 스월제트 유동에 미치는 영향에 관한 연구)

  • Kim, Jung-Bae;Lee, Kwon-Hee;Setoguchi, Toshiaki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.586-591
    • /
    • 2003
  • The present study addresses experimental results to investigate the effect of the jet supply chamber configuration on the sonic/supersonic swirling jets, as the case study. The experiment is carried out using the convergent nozzle with a various different chamber configurations upstream the nozzle throat, which is composed of four tangential inlet holes for the swirling flows. The jet pressure ratio is varied between 3.0 and 7.0. The sonic/supersonic swirling jet flows are specified by the pitot impact and static pressure measurements and visualized using the Shadowgraph method. The results show that the major structures of the sonic/supersonic swirling jet are strongly influenced by the jet supply chamber.

  • PDF

Experimental Investigation of Sonic Jet Flows for Wing/Nacelle Integration

  • Kwon, Eui-Yong;Roger Leblanc;Garem, Jean-Henri
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.522-530
    • /
    • 2001
  • An experimental study of compressible jet flows has been undertaken in a small transonic wind tunnel. The aim of this investigation was to realize a jet simulator in the framework of wing/nacelle integration research and to characterize the jet flow behavior. First, free jet configuration, and subsequently jet flow in co-flowing air stream configuration were analyzed. Flow conditions were those encountered in a typical flight condition of a generic transport aircraft, i.e. fully expanded sonic jet flows interacting with a compressible external flowfield. Conventional experimental techniques were used to investigate the jet flows-Schlieren visualization and two-component Laser Doppler Velocimetry (LDV). The mean and fluctuating properties were measured along the jet centerline and in the symmetric plane at various downstream locations. The results of two configurations show remarkable differences in the mean and fluctuating components and agree well with the trend observed by other investigators. Moreover, these experiments enrich the database for such flow conditions and verify the feasibility of its application in future aerodynamic research of wing/nacelle interactions.

  • PDF

Quantitative Visualization of Supersonic Jet Flows (초음속 제트 유동의 정량적 가시화)

  • Lee, Jae Hyeok;Zhang, Guang;Kim, Heuy Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.53-63
    • /
    • 2017
  • Sonic and supersonic jets include many complicated flow physics associated with shock waves, shear layers, vortices as well as strong interactions among them, and have a variety of engineering applications. Much has been learned from the previous researches on the sonic and supersonic jets but quantitative assessment of these jets is still uneasy due to the high velocity of flow, compressibility effects, and sometimes flow unsteadiness. In the present study, the sonic jets issuing from a convergent nozzle were measured by PIV and Schlieren optical techniques. Particle Image Velocimetry (PIV) with Olive oil particles of $1{\mu}m$ was employed to obtain the velocity field of the jets, and the black-white and color Schlieren images were obtained using Xe ramp. A color filter of Blue-Green-Red has been designed for the color Schlieren and obtained from an Ink jet printer. In experiments, two types of sonic nozzles were used at different operating pressure ratios(NPR). The obtained images clearly showed the major features of the jets such as Mach disk, barrel shock waves, jet boundaries, etc.

Visualization of the Supersonic Swirl Jet with Annular Stream (환형 유동을 수반하는 초음속 스월 제트 유동의 가시화)

  • Kim Jung-Bae;Lee Kwon-Hee;Setoguchi Toshiaki;Kim Heuy-Dong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.91-94
    • /
    • 2003
  • The present study addresses experimental results to investigate the details of the near field flow structures produced in the under-expanded, dual, coaxial, swirling, jet. The sonic swilling jets are emitted from a sonic inner nozzle and the outer annular nozzle produces the co/counter swirling streams against the primary swirling jet, respectively. The interactions between both the secondary annular swirling and primary inner supersonic swirling jets are quantified by the pilot impact and static pressure measurements, and visualized by using the Schlieren optical method. The experiment has been performed fur different swirl intensities and pressure ratios. The results obtained show that the secondary co-swirling jet significantly changes the inner under-expanded swirling jet, such as the recirculation zone, pressure distribution, through strong interactions between both the swirling jets, and the effect of the secondary counter-swirling jet on the primary inner jet is similar to the secondary co-swirl jet case.

  • PDF

A Computational Analysis of the Under-Expanded Moist Air Jet (부족팽창 습공기제트에 관한 수치해석적 연구)

  • Baek Seung-Cheol;Song Chul-Hwa;Toshiaki Setoguchi;Kim Heuy-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.197-204
    • /
    • 2005
  • The under-expanded jet discharged from a nozzle or an orifice has been extensively employed in industrial applications and aerospace technologies. A number of studies have been made to investigate the under-expanded jet structures such as Mach disk, barrel shock wave, jet boundary configuration, etc. In the current study, a computational work is performed to investigate the effect of non-equilibrium condensation of moist air on the under-expanded jet, which is discharged from a sonic nozzle. The results obtained are compared with an available experimental data. It is found that non-equilibrium condensation of moist air alleviates the oscillations of the under-expanded jet, and can increase Mach disk diameter, without changing the location.

Effects of an Elliptic Jet Screech Reflector on an Underexpanded Sonic Jet (타원형 제트 스크리치 반사판이 과소팽창 음속 제트에 미치는 영향)

  • Kim, Jung-Hoon;Kim, Jin-Hwa;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.887-894
    • /
    • 2004
  • A technique of mixing enhancement by using an elliptic jet screech reflector has been examined experimentally in an underexpanded sonic round jet where jet screech tone is generated. Since jet screech is known to enhance jet spreading, a reflector was designed to focus jet screech waves near the nozzle lip at an underexpanded jet. The reflector has an elliptic cross section of which one focus is located near the nozzle lip and the other in the jet screech source region in a plane including the jet axis. In the jet with the elliptic reflector, the mass flow rate showed a significant increase in the jet entrainment when compared to that for the small disk reflector. This was attributed to the increased screech amplitude near the nozzle lip as well as the mode change of the jet. The jet mixing was also increased by the amplified jet screech at two other underexpanded jets, but the jet oscillation mode did not change.

Study on Sonic/Supersonic Impinging Jets on a Flat Pate (평판에 충돌하는 음속/초음속 제트유동에 관한 연구)

  • 김희동;이호준;서태원;금기헌
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.15-15
    • /
    • 1998
  • The problem of the impingement of a sonic or a supersonic jet on a flat surface has not only wide applications but has also interesting and very complex flow phenomena. The main applications of this impinging jet include prediction of solid surface erosion, design of launcher systems, stage separation of multi-stage rocket system, V/STOL operations, thermal spray system, and manufacturing technologies of materials. Much have been learned about the supersonic impinging jet flow field but many fundamental questions have not been answered satisfactorily. The problem encompasses many facets of fluid dynamics which, in combination, present the compressibility effect and the viscous-inviscid interaction, coupled with flow separation and reattachment. What is more, there are many flow parameters that have on the impinging jet flow field, for example, Mach number, Reynolds number, pressure ratio, distance between the nozzle exit and flat plate, jet shock structure, nozzle diameter and etc. Thus the existing data on the supersonic impinging jet flow present considerable disagreement in which quantitative comparison between one result and another is often impossible.

  • PDF

A Computational Study of the Mach Disk in Under-Expanded Moist Air Jet (부족팽창 습공기 제트의 마하디스크 거동에 관한 수치적 연구)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.514-519
    • /
    • 2003
  • A computational study is performed to clarify the characteristics of supersonic moist air jet issuing from a simple sonic nozzle. The effects of the initial supersaturation on the Mach disk diameter and location, the barrel shock wave and jet boundary structures are investigated in details. The axisymmetric, compressible, Navier-Stokes equations, coupled with droplet growth equation, are solved using a third-order MUSCL type TVD finite-difference scheme. It is found that the Mach disk diameter increases with an increase in relative humidity of moist air. while its location is not significantly dependent on the relative humidity. As the relative humidity increases, the barrel shock wave and jet boundary are more expanded due to the local static pressure rise of nonequilibrium condensation.

  • PDF

A Computational Study of the Mach Disk in Under-Expanded Moist Air Jet (부족팽창 습공기 제트의 마하디스크 거동에 관한 수치적 연구)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.562-567
    • /
    • 2003
  • A computational study is performed to clarify the characteristics of supersonic moist air jet issuing from a simple sonic nozzle. The effects of the initial supersaturation on the Mach disk diameter and location, the barrel shock wave and jet boundary structures are investigated in details. The axisymmetric, compressible, Navier-Stokes equations, coupled with droplet growth equation, are solved using a third-order MUSCL type TVD finite-difference scheme. It is found that the Mach disk diameter increases with an increase in relative humidity of moist air. while its location is not significantly dependent on the relative humidity. As the relative humidity increases, the barrel shock wave and jet boundary are more expanded due to the local static pressure rise of nonequilibrium condensation.

  • PDF