• Title/Summary/Keyword: Sonar Beam Pattern

Search Result 28, Processing Time 0.019 seconds

Numerical analysis of acoustic field inside sonar dome by using a beam tracing method and the theory of elastic wave propagation (빔 추적기법과 다층구조에서의 탄성파 전파이론을 적용한 소나돔 내부 음장 수치해석)

  • Han, Seung-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.26-33
    • /
    • 2006
  • A sonar dome is basically designed and installed to protect sonar array from shocks, sea wave slaps and floating matters. The acoustic wave passing through sonar dome, however, can be distorted in magnitude and phase. This paper presents a numerical method for predicting the steady-state sound pressure on the surface of transducer array in the sonar dome and typical results of sonar beam pattern affected by sonar dome. A beam tracing model with phase information and a multi-layered elastic boundary model are involved. A full three-dimensional sonar dome is modeled as a GRP acoustic window, a rubber coated steel baffle and a rubber coated steel hull. A transducer array is modeled as thick steel cylinder. There are some assumptions such as incidence of plane wave, specular reflection on boundary and directionality of transducer element.

Design of the Narrow Beam for Sidescan Sonar (Sidescan Sonar용 Narrow Beam의 설계)

  • 이종무;이종식
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.107-113
    • /
    • 1993
  • Sidescan sonar uses the fan type beam which has horizontally narrow and vertically somewhat wide beam pattern. To construct such a beam we will use an array of transducers. In case of using single transducer it must have a high frequency to have the fan type beam, but in case of using an array it must have to be high frequency. We are planning to use 30 kHz transducers for our sidescan sonar under development. This paper shows ways of designing a narrow beam for the sidescan sonar system by illustrating various shapes of the beam patterns.

  • PDF

Steering Beam Pattern Synthesis of Line Array SONAR using Modified Two Step Least Squares Method (개선된 2단 최소자승법을 이용한 선배열 소나의 조향 빔 형성)

  • Park, Kyung-Min;Lee, Seok-Jin;Chung, Suk-Moon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.228-236
    • /
    • 2014
  • Towed array SONAR is deformed because it operates in fluid such as an ocean. It especially undergoes significant change in shape as a towing vessel takes a turn. In this case, beam pattern synthesis of the line array is limited, resulting in degradation in quality such as signal-to-noise ratio. This paper presents a modified two-step least squares algorithm based on the two-step least squares method. The shape of the sea-operated line array formation with the towing vessel changing course(angle) was modeled and the algorithm was subsequently applied. While changing course and location of the main lobe in beam pattern was altered, signal-to-noise ratio of steering beam pattern synthesis was analyzed by algorithm (proposed and others). As a result, the proposed algorithm presented improvement in performance by 2dB compared to other algorithms while forming relatively constant beam pattern.

Optimal Design of Deep-water 30kHz Omnidirectional Sonar Transducer Using a Coupled FE-BEM

  • Jarng, Soon-Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.4E
    • /
    • pp.3-9
    • /
    • 1999
  • Deep-water sonar transducers of FFR (Free Flooded Ring) type have been designed using a coupled FE-BEM. The proposed sonar transducers are composed of piezoelectric ceramic tubes and structural steel materials for simple fabrication. In order to have an omnidirectional beam pattern around 30kHz, a conic steel is placed below a piezoelectric tube or a steel disc is placed between two piezoelectric tubes. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with external electrical excitation conditions. Various results are available such as directivity patterns and transmitting voltage responses. The most optimal structure and dimensions of the steel material were calculated, so that the beam patterns of the sonar transducers had +/- 3dB omnidirectivity at 30kHz.

  • PDF

A Study on the Gain Control for Underwater Side Scan Sonar System (초음파를 이용한 해저면 영상화 기법에서의 Gain Control에 관한 연구)

  • 이철원;오영석;우종식
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.216-221
    • /
    • 2000
  • This paper deals with the Gain Control in the processing of the underwater acoustic image obtained from side scan sonar(SSS) system. At first, this paper describes the principles of SSS that is a surveying equipment for the underground of the rivers or dams as well as sea floor. Then this paper analyzes the cause and effects of the time varying intensity from the view point of transmission loss and beam pattern. At last, the time varying gain filter that is adopted by the towfish is introduced.

  • PDF

Beam pattern analysis for beam homogenization of conformal array sonar (곡면 배열 소나의 빔 균일화를 위한 빔 패턴 분석)

  • Jeong-Ung, Choi;Wooyoung, Hong;Jun-Seok, Lim;Keunhwa, Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.637-646
    • /
    • 2022
  • Sub-arrays of arbitrary conformal array have different geometric shape through steering direction, thus the beam patterns of sub-arrays are always non-uniform. In this paper, we apply the beam pattern synthesis method using convex optimization into the conformal array, and shows the improvement of uniformity of beam performance. The simulation is performed with the conformal array of cut-sphere shape. As a result, the standard deviation of 3 dB beamwidth in elevation is greatly reduced but the directivity index is also reduced. To alleviate this trade-off, we propose a convex optimization using a shading function.

Acoustic Tracking of Fish Movements in an Artificial Reef Area Using a Split-beam Echo Sounder, Side-scan and Imaging Sonars at Suyeong Man, Busan, Korea (수영만 인공어초 해역에서 소너에 의한 어군의 유영행동 추적)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.3
    • /
    • pp.273-281
    • /
    • 2013
  • The movement patterns of fish aggregations swimming freely near artificial reefs on August 24, 2006, at Suyeong Man, Busan, Korea, were acoustically investigated and analyzed. Acoustic surveys were conducted using a 70kHz split-beam echo sounder, 330 kHz side-scan sonar and a 310 kHz imaging sonar. Algorithms for tracking the movement of fish aggregations swimming in response to artificial reefs were developed. The travel direction and the swimming speed for two aggregations of fish were estimated from the trajectory orientations of echo responses recorded by the imaging sonar.The first group was floating just above the reef structure, while remaining in the midwater column, and the second group was swimming through and around artificial reefs near the seabed. The mean swimming speed was estimated to be 0.40 m/s for the midwater fish aggregation and 0.17 m/s for the bottom aggregation close to artificial reefs. These results suggest that the swimming behavior of fish aggregations passing close to artificial reefs near the seabed displayed a slower moving pattern than fish floating just above the reef structure in the midwater column.

PZT4 Sonar Shell transmitter Simulation Using a Coupled FE-BE Method

  • Jarng, Soon-Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.1E
    • /
    • pp.14-19
    • /
    • 1998
  • This article describes the application of a coupled finite element-boundary element method to obtain the steady-state response of a sonar transducer. The sonar shell is simulated to be driven by electrical charges applied onto inner and outer surfaces of the shell. It is shown that at relatively low input frequency a beam pattern which is almost close to omnidirection can be obtained. The coupled FE-BE method is described in detail.

  • PDF

In-water SONAR shell transmitter simulation using a coupled FE-BE method

  • Jarng, Soon-Suck
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.1
    • /
    • pp.37-43
    • /
    • 1998
  • This article describes the application of a coupled finite element-boundary element method to obtain the steady-state response of a sonar transducer. The particular structure considered is a flooded piezoelectric spherical shell. The sonar shell is simulated to be driven by electrical charges applied onto inner and outer surfaces of the shell. It is shown that at relatively low input frequency a beam pattern which is almost close to omnidirection can be obtained. The coupled FE-BE method is described in detail.

  • PDF

Optimal Design of Deep-water 30 kHz Omnidirectional Sonar Transducer using a Coupled FE-BEM (결함형 유한요소-경계요소 기법에 의한 심해저용 30 kHz 전방향성 소나 변환기 최적 설계)

  • Jarng Soon Suck;Choi Heun Ho;Lee Je Hyeong;Ahn Heung Gu
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.275-280
    • /
    • 1999
  • Deep-water sonar transducers of FFR (Free Flooded Ring) type have been designed using a coupled FE-BEM. The proposed sonar transducers are composed of piezoelectric ceramic tubes and structural steel materials for simple fabrication. In order to have an omnidirectional beam pattern around 30 kHz, a conic steel is placed below a piezoelectric tube or a steel disc is placed between two piezoelectric tubes. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with external electrical excitation conditions. Various results are available such as directivity patterns and transmitting voltage responses. The most optimal structure and dimensions of the steel material were calculated, so that the beam patterns of the sonar transducers had +/- 3 dB omnidirectivity at 30 kHz.

  • PDF