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Abstract

Deep-water sonar transducers of FFR (Free Flooded Ring) type have been designed using a coupled FE-BEM. The
proposed sonar transducers are composed of piezoelectric ceramic tubes and structural steel materials for simple fabrication,
In order to have an omnidirectional beam pattern around 30kHz, a conic steel is placed below a piezoelectric tube or a
steel disc is placed between two piezoelectric tubes. The dynamics of the sonar transducer is modelled in three dimensions
and is analyzed with external electrical excitation conditions. Various results are available such as directivity patterns and
transmitting voltage responses. The most optimal structure and dimensions of the steel material were calculated, so that the

beam patterns of the sonar transducers had +/- 3dB omnidirectivity at 30kHz.

I. Introduction

This paper deals with the structural design of deep-
water omnidirectional sonar transducers operating around
30kHz. At 30kHz of the mid-frequency band in underwater
sonar applications, the structural design of a sonar
transducer must consider not only the dimensions of the
piczoelectric ceramic but also the dimensions of any adjacent
structural materials in order to produce omnidirectional
directivity patterns. That is, the acoustic pressure field formed
by the mutual interaction between the piezoclectric ceramic
and the adjacent backing object produces different
directivity patterns as the shape and the dimensions of
the backing object are changed. Because of this mutual
interaction of the acoustic pressure field the importance
of the optimal design of the backing object increases.
The optimal design of the sonar transducer is followed by
the acousto-mechano-clectrical simulation of the dynamic
bebaviour of the sonar transducer under the water.

A sonar transducer converts electric cutrents applied
onto two electrodes of a piezoelectric material to the
mechanical deformation of the piezoelectric ceramic which is
radiated into an infinite fluid domain in the form of the
acoustic pressure. The sonar transducer can be modetled
by a coupled finite element-boundary element method
(FE-BEM){1,2]. The structural dynamics of the composite
solid material can be modelled by the FEM, and coupling
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with the inviscid and compressive fluid material can be
modelled by the BEM. The resulting coupled FE-BEM
can simulate the infinite radiation of the acoustic pressure
generated by the piezoelectric solid material in the fluid
media. The infinite element method (IEM) is also applicable
for the infinite radiation condition of the pressure sound
at the outer boundary of the finite fluid domain[3].
Others use extra damping elements at the outer boundary
of the finite fluid domain for the infinite radiation
condition[4]. However these methods require too many
fluid elements as an input frequency is increased. Also it
is always difficult to generate fluid element meshes
surrounding solid element meshes. The coupled FE-BEM
need to generate no fluid elements.

The main aim of this paper is to optimally design
deep-water 30kHz sonar transducers with an omnidirec-
tional beam pattem using the coupled FE-BEM. Two
patticular structural cases are suggested and studied

11. Numerical Method

2.1. Finite Element Method{FEM)
The following equation(l) is the integral formulation
of the piezoelectric equations:
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{ F ) Applied Mechanical Force
{ F; } Fluid Interaction Force

{ @ ) Applied Electrical Charge [ ¢ |Elastic Displacement
{ # ) Electric Potentia w Angular Frequency
[ M ] Mass Matrix

[ K., }Elasiic Stiffness Matrix

[ R ] Dissipation Matrix

[ X 45 ] Permittivity Matrix
{ K .4 1 Piezoelectric Stiffness Matrix [K ] =[K 4]

The isoparamctric formulation for 3-dimensional
structural elements is well documented by Allik H. et. al
[51. Each 3-dimensional finite element is composcd of 20
quadratic nodes and each node has nodal displacement
(@, a,, a) and electric potential (¢) variables. In local
coordinates the finite element has 6 surface planes (txy,
*yz, *zx) which may be exposed 1o extemal flvid
environment. The exposed surface is used as a boundary
element which is composed of 8 quadratic nodes.

2.2. Boundary Element Method{BEM)
For sinusoidal steady-state problems, the Helmholtz
equation, V2¥ + A ¥ = (, represents the fluid mech-
anics. ¥ is the acoustic pressure with time variation,
™ and H=w/c} is the wave number. In order to
solve the Helmholtz equation in an infinite fluid media,
a solution to the equation must not only satisfy structural

surface boundary condition(BC), % = ps o a, but
condition at infinity,

+RP%S = 0. 6an represents  differen-

also the radiation

]lm ﬁ(

tiation along the outward normal to the boundary. o, and
a, are the fluid density and the normal displacement on the

structural surface. The Helmholiz integral equation derived
from Green's second theorem provides such a solution
for radiating pressure waves;
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where Gup.g) = . r=ip—gl p is any

4m’
point in either the interior or the exterior and q is the
surface point of integration. B(p) is the exterior solid
angle at p. ¥, (p) is an incident acoustic pressure.

inc

The acoustic pressure for the ith global node, &(p,), is

expressed in discrete form [6): (1<:i< ng)
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where nt is the total number of surface elements and
2, ,; are three dimensional displacements. Equation (3b)
is derived from equation (3a) by discretizing tntegral
surface. And equation (3¢) is derived from equation (3b)
since an acoustic pressurc on an ijntegral surface is
interpolated from adjacent 8 quadratic nodal acoustic
pressures comresponding the integral surface. Then equation
{3d) is derived from equation (3c) by swapping integral
notations with summing notations. Finally the parentheses
of eguation (3d) is cxpressed by upper capital notations
for simplicity.

When equation (3e) is globally assembled, the discrete
Helmholtz equation can be represented as
([A)-AD{¥} = +p,0'[Bla} ~ (¥ud ¥

where [A] and {B] are square martrices of (ng by ng)
size. ng is the total number of surface nodes.

When the impedance matrices of equation {(4), [A] and
[B], are computed, two types of singularity arise[7]. One
is that the Green’s function of the equation, G (p;, 9),
becomes infinite as q approaches to pi. This problem is
solved by mapping such rectangular local coordinates into
triangular local coordinates and again into polar local
coordinates[8]. The other is that at certain wave number
the matrices become ill-conditioned. These wave number
are corresponding to eigenvalues of the interior Dirichlet
problem[9). One approach to overcome the matrix singularity
is that [A] and [B] of equation {(4) are modified to provide
2 unique solution for the entire frequency rangef10~13).
The modified matrix equation referred to as the modified
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Helmholtz gradient formulation (HGF)[13] is obtained by
adding a multiple of an extra integral equation to equation (4).

([A]_MHGBQ{C]){W} = +ps ll)z( [E]@ﬂ{D]){a} )
- (qrm@a_ah)
an,
where
_ V=1
&+ (Number of surface elements adjacent & surface node)
[C] and [D] are rectangular matrices of {(nt by ng)

a =

size. nt is ihe total number of surface elements. &
symbol indicates that the rows of [C],[D] corresponding
to surface elements adjacent a surface node are added to the
row of [A],[B] comesponding to the surface node, that is,
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where S(i) is the number of surface element adjacent a
surface node, The derivation of the extra matrices [C),[D}
are well described by Francis D.T.1(13]. Equation (6)
may be reduced in its formulation using superscript D

for convenience;
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Equation (7} can be written as
() = +0,AD)B%) - AH 198, ©®)

2.3. Coupled FE-BE Method

The acoustic fluid loading on the solid-fluid interface
generates interaction forces. These forces can be refated
to the surface pressures by a coupling matrix [L][6,14};

{F} = ~ [LU{T} ©

where [L] = fN'deS N is a matrix of sutface

shape functions and n is an outward normal vector at the
surface element. Nt is the transposed form of N matrices.
Equations (8) and () indicate that the interaction force
can be expressed by functions of elastic displacement
instead of acoustic pressure. This relationship can be
applied to equation (1) when the sonar transducer model

is submerged into the infinite fluid media;

(A + [L1a® '8, = [(K.la + (o, (L)(AD) 'B%)a
+ [KLl¢t — (Mg + jelR](a}
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where
?PQ,;, Incident Pressure
[L] Coupling Matrix at the Fluid-Structure Intetface
A® Fluid BEM Matrix [A]
B® Fluid BEM Matrix (B]
p;  Fluid Density i=v—1

Since the present sonar transducer is modelled as a
projector, the intetnal force vector, {F}, and the extemal
incident pressure, [L](A®) “1w%, , of equation (10)
are removed. The only applied BC for the equation is
the applied electrical charge vector, {{}. The acoustic
pressure in the far field is determined by B(p)=1 for
given values of surface nodal pressure and surface nodal
displacement;
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2.4, Modsliing of omnidirectional piezcelectric
sonar transducers

Two particutar structural designs are considered for
omnidirectiona} sonar transducers. One is that a conic
steel is placed below a piezoelectric tube (Figure 1). And
the other is that a steel disc is placed between two
piezoelectric tubes (Figure 2). A ceramic tube is the
most common shape in deep-water sonar transducer
design. Table 1 is the dimensions of the ceramic tube.
The ceramic tube is polarized in radial axis.

PZT4

(a)
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Table 2. Piezoelectric Material Properties of PZT4 (Axially

Polarized Properties).
Parameter | Value Unie Parameter | Value Unit
z
0 7500 Kg/m3 Cg 3.06E+10| Nfm2

139E+11| Nim2 | ¢, , 5.2 N/Vm

7I8ES10f Nm2 | ¢, |52 N/Vm

s
&
C; | T43E+10) Nm2 | e; 15.1 N/vm
4
G

1.39E+11| N/m2 ey, 12.7 NfVm
® 7A3E+10| Nfm2 ep - 12.7 NfVm
— C: LISE+11 Nm2 | &% 6.46E-9 | F/m
2 c 2.56E+10} Nfm2 & 6.46E9 | F/m
CZ | 2.56E+10| Njm2 &l 5.62E-9 | Ffm
x K33 0.69 - K15 0.70 -
STEEL

Table 3. Propertiecs of other materials used for the
omnidirectional sonar transducer design.

Property | Density p | Young's Poison’s
. Modulus Y :
(© Material [Kgfm3] INfm2] Ratio ¥
Air 1.22 t 411E5 -
Water 1000 0.222E10 -
Steel 7850 207.0ES 029

I11. Results and Discussions

The coupled FE-BE method has been programmed
with Fortran language running at a SUN workstation.

Calculation is done with double precision and the

progtam is made for three dimensional structures. It is a

(@

common practice to have the size of the largest element
) to be less than A/3.
Figure 1. Three dimensional views of somar transducers, (a)
and (c), and their structural finite clements, (b)
and (d). 3.1. One ceramic tube with a conic steel
The dimension of the conic stee]l was kept constant
while the gap between the ceramic tube and the conic

Table 1. Dimensions of the ceramic tube. D
steel was changed to produce the best omnidirectional

Type frumn} beam pattern. Figure 2 shows the directivity pattern of
Inner Radius 31.98 the sonar transducer at 30kHz with Imm gap. The
Outer Radius 38.20 ceramic tube is coated with non-conductive materials, and

the ceramic and the mounting steel is moulded with a
rubber which has the similar impedance as the water.

The difference between the maximum acoustic pressure

Height 12.70

Tablc 2 and Table 3 show property values of the
-~ . \ .

materials { for the sonar transducer. level and the minimum acoustic pressure level is defined
as a directivity variation.
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Figure 2. The directivity pattern of the sonar transducer at 30
kHz with lmm gap.

Figure 3 shows the directivity variation as a function
of the gap. At 9mm gap the sonar transducer resulis in the
lowest directivity variation of 4.9[dB]. Figure 4 shows
the dimensional shape of the optimally designed sonar
transducer. And figure 5 shows the directivity pattern for
the optimally designed sonar transducer at 30kHz.
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Figure 3. The directivity variation as a function of the gap.
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Figure 4. The dimensional shape of the optimally designed
sonar {ransducet.

Figure 5. The directivity pattern of the sonar transducer at 30
kHz with 9mm gap.

Figure 6 shows the transmitting voltage responses
(TVR) of the optimally designed sonar transducer. The
TVR is calculated at Im from the source origin. Three
labels in the figure indicate directions of TVR. The TVR
shows +{- 3 dB frequency response between 20kHz and
33kHz in the Z axis. The sharp peak resonance in the figure
is probably due to the adjacent elastic structure and the gap.
And figure 7 shows the G-B graph of the sonar transducer.

145 Transmitting voltage response
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Figure 6. The TVR of the optimally designed sonar eransducer.
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Figure 7. The G-B graph of the sonar transducer.



3.2. Two ceramic tubes and one steel disc

The dimensions of the steel disc were kept constant
while the gap between the ceramic tubes and the steel
disc was changed to produce the most omaidirectional
beam pattern. The two ceramics are connected in the
inner electrodes and the outer electrodes for electrical
drive with the same phase. Figure 8 shows the directivity
pattern of the sonar transducer at 30kHz with lmm gap
which produces the lowest directivity variation, 5.3[dB).
And figure 9 shows the dimensional shape of the
optimally designed sonar transducer.

Figure 8. The directivity pattem of the sonar transducer at
30kHz with lmm gap.

Figure 9. The dimensional shape of the optimally designed
sonar transducer.

Figure 10 shows the TVR of the optimally designed
sonar transducer. The TVR shows +/- 3 dB frequency
response between 20kHz and 35kHz in the Z axis except
at a resonance around 28kHz. And figure 11 shows the
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G-B graph of the sonar transducer. It is noticed that the
TVR of the ceramic tube above the conic steel has
higher output acoustic power than that of the steel disc
between (wo ceramic tubes. It is because the former
transducer (the ceramic tube above the conic steel) has
twice motec capacitance than the latter transducer (the

steel disc between two ceramic tubes).

18] eof 14PN at tm

Frequency [Hz] x10*

Figure 10. The TVR of the optimally designed somar transducer.
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Figure 11, The G-B graph of the sonar transducer.

IV. Conclusion

Deep-water sonar transducers of FFR type have been
designed using a coupled FE-BEM. In order to have an
omnidirectional beam pattern at 30kHz, a conic steel is
placed below a piezoelectric tube or a steel disc is placed
between two piezoelectric tubes. The optimal structure
and dimensions of the steel material are suggested, so
that the beam pattems of the sonar transducers have +/-
3dB omnidirectivity at 30kHz. It is also concluded that
the transducer with conic sieel could be better in
omnidirectional directivity than that with steel disc. In
addition, TVR of the proposed transducers is analyzed
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and it is found that TVR is optimal in frequency range
of interess.
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