• Title/Summary/Keyword: Solvent removal

Search Result 210, Processing Time 0.021 seconds

Conversion of Fructose to 5-HMF(5-hydroxymethylfurfural) in DMSO(dimethylsulfoxide) solvent (DMSO(dimethylsulfoxide) 용매에서 과당의 5-HMF(5-hydroxymethylfurfural) 전환)

  • Sung, Yong Joo;Park, Chong-Jin;Kim, Byung-Ro;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.2
    • /
    • pp.21-26
    • /
    • 2013
  • Conversion of fructose to 5-hydroxymethylfurfural (5-HMF) was investigated in dimethylsulfoxide (DMSO) solvent with increasing reaction temperatures and impact of residual water from dehydration reaction byproduct. To convert fructose to 5-HMF, increasing reaction temperature led more conversion to 5-HMF than lower temperature at the range of $120-150^{\circ}C$ in DMSO solvent. DMSO engaged in the acid-catalyzed dehydration and rearrangement reaction as acid and solvent. Increasing temperature led to more furanose structure than pyranose at the range of $30-80^{\circ}C$. Formed 5-HMF could be degraded to levulinic and formic acid at the presence of acid and water. Removal of water in reaction medium could prevent 5-HMF degradation.

Effect of Solvents on Phase Behavior and Flux Removal Efficiency in Alkyl Ethoxylates Nonionic Surfactant Based Cleaners (Alkyl Ethoxylates계 비이온 계면활성제를 주체로 한 세정제에서 용제에 따른 상거동과 플럭스 제거 효능)

  • Lee, Jong-Gi;Bae, Sang-Soo;Cho, In-Sik;Park, So-Jin;Park, Byeong-Deog;Park, Sang-Kwon;Lim, Jong-Choo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.677-683
    • /
    • 2005
  • In this work, the effect of additives such as solvent, sodium dodecyl sulfate and NaCl on microemulsion phase behavior and flux removal efficiency in systems containing commercial alkyl ethoxylates nonionic surfactant was investigated. The addition of a n-hydrocarbon as a solvent produced on O/W (Oil/Water) microemulsion phase over a wider range of temperature and cosurfactant to surfactant ratios. Especially, the addition of n-hexadecane to the surfactant system, which was the most hydrophobic solvent among the solvents used in this study, produced a microemulsion phase over a wide range of temperatures and promoted formation of a microemulsion phase at lower temperatures. The candidate for cleaner samples, prepared from phase behavior experiments, showed excellent removal efficiency for abietic acid at $40^{\circ}C$. These data suggested the potential applicability of hydrocarbons to actual cleaner formulations.

Debinding Process Using Supercritical Fluids in Metal Powder Injection Molding (분말사출성형에서 초임계유체를 이용한 탈지공정)

  • 김용호;임종성;이윤우;박종구
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.6-14
    • /
    • 2003
  • The purpose of the present study is to investigate the method decreasing debinding time as well as lowering operation condition than pure supercritical $CO_2$ debinding by using cosolvent or binary mixture of propane + $CO_2$. First method is to add cosolvent, such as n-hexane, DCM, methanol, 1-butanol, in supercritical $CO_2$. In case of adding cosolvent, we were found the addition of non-polar cosolvent (n-hexane) improves dramatically the binder removal rate (more than 2 times) compared with pure supercritical $CO_2$ debinding, second method is to use mixture of supercritical propane + $CO_2$, as solvent. In case of using mixture of supercritical propane + $CO_2$, the rate of debinding speeded up with increasing of pressure and concentration of propane at 348.15 K. It was found that addition of cosolvent (e.g., n-hexane, DCM) and binary mixture propane + $CO_2$ for supercritical solvent remarkably improved binder removal rate for the paraffin wax-based binder system, in comparison with using pure supercritical $CO_2$.

Dye removal from water using emulsion liquid membrane: Effect of alkane solvents on efficiency

  • Ghaemi, Negin;Darabi, Farzaneh;Falsafi, Monireh
    • Membrane and Water Treatment
    • /
    • v.10 no.5
    • /
    • pp.361-372
    • /
    • 2019
  • Effect of different alkane based solvents on the stability of emulsion liquid membrane was investigated using normal alkanes (n-hexane, n-heptane, n-octane and n-decane) under various operating parameters of surfactant concentration, emulsification time, internal phase concentration, volume ratio of internal phase to organic phase, volume ratio of emulsion phase to external phase and stirring speed. Results of stability revealed that emulsion liquid membrane containing n-octane as solvent and span-80 (5 % (w/w)) as emulsifying agent presented the highest amount of emulsion stability (the lowest breakage) compared with other solvents; however, operating parameters (surfactant concentration (5% (w/w)), emulsification time (6 min), internal phase concentration (0.05 M), volume ratio of internal phase to organic phase (1/1), volume ratio of emulsion phase to external phase (1/5) and stirring speed (300 rpm)) were also influential on improving the stability (about 0.2% breakage) and on achieving the most stable emulsion. The membrane with the highest stability was employed to extract acridine orange with various concentrations (10, 20 and 40 ppm) from water. The emulsion liquid membrane prepared with n-octane as the best solvent almost removed 99.5% of acridine orange from water. Also, the prepared liquid membrane eliminated completely (100%) other cationic dyes (methylene blue, methyl violet and crystal violet) from water demonstrating the efficacy of prepared emulsion liquid membrane in treatment of dye polluted waters.

Removal of OH Spectral Interferences from Aqueous Solvents in Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) with Ar Cryogenic Desolvation

  • Cho, Young-Min;Pak, Yong-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1415-1420
    • /
    • 2005
  • The spectral interferences of OH from aqueous solvents in ICP-AES have been studied and eliminated using a cryogenic argon trap. The prominent lines of Bi I 306.772 nm, Al I 309.271 nm, and V II 310.230 nm, which are very seriously overlapped with the OH band, were examined. With an extended torch and high tangential flow of 20 L/min, water vapor from air entrainment was prevented. The combination of a condenser and argon cryogenic trap was able to eliminated most of water vapor carried by the argon sample gas. Removal of OH spectral interference could extend the linearity of the calibration curve 5-10 times on the lower concentration for ICP-AES. Interference Equivalent Concentration (IEC) has been reduced to 5.6, 5.9, and 12.4 times for Bi, Al and V, respectively.

Removal of Cl from the Incineration Ash of Domestic Municipal Solid Waste

  • Han, Gi-Chun;Kim, Hyung-Seok;Ahn, Ji-Whan;Kim, Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.628-632
    • /
    • 2001
  • The removal rate of Cl from municipal solid waste incineration(MSWI) ash(bottom ash and fly ash) by washing was investigated. The Cl contents in the bottom ash and fly ash were 2.6-3.0% and 25-30% respectively, and KCl, NaCl, CaCIOH and friedel's salt were main components. From the results on the effects of washing time and temperature, the Cl contents in the bottom ash and fly ash were decreased up to 0.3% and 2.0% respectively by using of water as a solvent within 30 min at 2$0^{\circ}C$, 300 rpm of agitation speed and 10 of liquid/solid ratio. It is expected that the removal of Cl from the incineration ash by washing could make use of the ash for a cement raw material and so on.

  • PDF

A Study for Carbon Dioxide Removal Process Using N-Methyl-2-Pyrrolidone Solvent in DME Production Process (DME 생산공정에서 노말 메틸 피로리돈(N-Methyl-2-Pyrrolidone) 용매를 이용한 이산화탄소 제거공정 연구)

  • Jung, Jongtae;Roh, Jaehyun;Cho, Jungho
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.347-354
    • /
    • 2012
  • In this study, simulation works have been performed for the $CO_2$ removal process contained in the DME production process using NMP (N-methyl-2-pyrrolidone) as a solvent. PRO/II with PROVISION release 9.1 at Invensys was used as a chemical process simulator and NRTL activity coefficient model with Henry's law option and Soave-Redlich-Kwong equation of state were used for thermodynamic models. For the determination of the binary interaction parameters in NRTL model, regression works have been performed to match the experimental thermodynamic data. Optimal feed tray location which minimizes the reboiler heat duty was determined.

A Study for Carbon dioxide Removal Process Using Methanol Solvent in DME Manufacture Process (DME 생산공정에서 메탄올을 이용한 이산화탄소 제거 공정 연구)

  • Cho, Duhee;Rho, Jaehyun;Kim, Dong Sun;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1502-1511
    • /
    • 2013
  • In this study, simulation works have been performed for the modeling of $CO_2$ removal process contained in the DME production process through an absorber-stripper system using methanol aqueous solution. Aspen Plus release 7.3 in AspenTech company was utilized as a simulation tool and PC-SAFT modeling equation of state was used as a thermodynamic model. Fitting parameters built-in PC-SAFT model was determined by regressing experimental data, predicted results using PC-SAFT model were compared with experimental data in order to verify the exactness of the thermodynamic model. Optimization works have been performed to reduce the utility consumptions using solvent circulation rate, column operating pressure and feed stage location as manipulated variables.

Nutritional Quality and Physicochemical Characteristics of Defatted Bovine Liver Treated by Supercritical Carbon Dioxide and Organic Solvent

  • Kang, Sung-Won;Kim, Hye-Min;Rahman, M. Shafiur;Kim, Ah-Na;Yang, Han-Sul;Choi, Sung-Gil
    • Food Science of Animal Resources
    • /
    • v.37 no.1
    • /
    • pp.29-37
    • /
    • 2017
  • Defatted bovine liver (DBL) is a potential source of protein and minerals. Supercritical carbon dioxide ($SC-CO_2$) and a traditional organic solvent method were used to remove lipid from bovine liver, and the quality characteristics of a control bovine liver (CBL), bovine liver defatted by $SC-CO_2$ ($DBLSC-CO_2$) at different pressures, and bovine liver defatted by organic solvent (DBL-OS) were compared. The $DBLSC-CO_2$ samples had significantly higher (p<0.05) protein, amino acid, carbohydrate, and fiber contents than CBL and DBL-OS. There was a higher yield of lipid from CBL when using $SC-CO_2$ than the organic solvent method. SDS-PAGE analysis demonstrated that the CBL and $DBLSC-CO_2$ had protein bands of a similar intensity and area, whereas DBL-OS appeared extremely poor bands or no bands due to the degradation of proteins, particularly in the 50 to 75 kDa and 20 to 25 kDa molecular weight ranges. In addition, $DBLSC-CO_2$ was shown to have superior functional properties in terms of total soluble content, water and oil absorption, and foaming and emulsification properties. Therefore, $SC-CO_2$ treatment offers a nutritionally and environmentally friendly approach for the removal of lipid from high protein food sources. In addition, $SC-CO_2$ may be a better substitute of traditional organic solvent extraction for producing more stable and high quality foods with high-protein, fat-free, and low calorie contents.

A comparative study on the carbon dioxide removal capability between the processes using physical solvent and membrane process (이산화탄소 제거공정에서 물리 흡수제를 사용한 공정과 멤브레인을 사용한 공정 사이의 비교 연구)

  • Kang, Jinjin;Noh, Jaehyun;Ahn, June Shu;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6590-6596
    • /
    • 2013
  • Carbon dioxide should be removed to increase the productivity of dimethyl ether(DME) from the DME manufacturing process. In this study, carbon dioxide can be removed using a physical absorbent through a solvent absorption method and membrane separation method. After performing the simulation for the carbon dioxide removal process, the energy consumption of the processes was compared. Methanol was used as a physical absorbent for the rectisol process, dimethyl ethers of polyethylene glycol for the Selexol process and N-methyl pyrrolidone for the Purisol process. By performing the simulation for each process, the energy consumption was compared. The Purisol process had the lowest energy consumption, followed in order by the Selexol process, Rectisol process and Membrane process. Therefore, the Purisol process was the most suitable method for the carbon dioxide process in the DME manufacturing process.