• Title/Summary/Keyword: Solution parameter

Search Result 1,211, Processing Time 0.03 seconds

Parameter estimation of four-parameter viscoelastic Burger model by inverse analysis: case studies of four oil-refineries

  • Dey, Arindam;Basudhar, Prabir Kr.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.3
    • /
    • pp.211-228
    • /
    • 2012
  • This paper reports the development of a generalized inverse analysis formulation for the parameter estimation of four-parameter Burger model. The analysis is carried out by formulating the problem as a mathematical programming formulation in terms of identification of the design vector, the objective function and the design constraints. Thereafter, the formulated constrained nonlinear multivariable problem is solved with the aid of fmincon: an in-built constrained optimization solver module available in MatLab. In order to gain experience, a synthetic case-study is considered wherein key issues such as the determination and setting up of variable bounds, global optimality of the solution and minimum number of data-points required for prediction of parameters is addressed. The results reveal that the developed technique is quite efficient in predicting the model parameters. The best result is obtained when the design variables are subjected to a lower bound without any upper bound. Global optimality of the solution is achieved using the developed technique. A minimum of 4-5 randomly selected data-points are required to achieve the optimal solution. The above technique has also been adopted for real-time settlement of four oil refineries with encouraging results.

Effects of Electrospinning Parameters on the Fiber Formation and Application (전기방사 조건에 따른 나노섬유상의 구조 및 응용)

  • RYU, HO SUK;PARK, JIN SOO
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.1
    • /
    • pp.71-80
    • /
    • 2018
  • Electrospinning is a versatile technique that utilizes electrostatic forces to produce very thin and fine fibers of polymer ranging from submicron to nanometer scale. The technique can be applied to fibers of a various polymer types. Working parameters in the electrospinning are very important to understand not only the nature of electrospinning but also the conversion of polymer solutions into nanofibers through electrospinning. Those parameters in the electrospinning can be broadly divided into three parts. The first parameter is solution parameters such as molecular weight of polymer, concentration, viscosity, surface tension and conductivity/surface charge density of solution. The second parameter is process such as voltage, distance between the collector and the tip of the syringe, shape of collectors, flow rate. The third parameter is ambient parameters such as humidity and temperature. Fibers which made by electrospinning with working parameters are applied for various fields according to shape such as medical, cloth, photodiode, a sensor technology, catalyst, filtration, battery etc.

분포매개정수를 갖는 원자로의 최적제어 1

  • 지창열;김상훈
    • 전기의세계
    • /
    • v.29 no.1
    • /
    • pp.53-57
    • /
    • 1980
  • The analytical treatment for a terminal cost problem of a distributed reactor with a small singular parameter is presented. The inverse of the neutron velocity is regarded as a singular parameter, and the model, adopted for simplicity, is a cylindrically symmetrical reactor. The Helmholtz mode expension is used for the application of the optimal theory for lumped parameter systems to the spatially distributed parameter system. The closed-form solution is explicitely obtained for machine calculation.

  • PDF

Analysis of partially embedded beams in two-parameter foundation

  • Akoz, A.Yalcin;Ergun, Hale
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • In this study, Pasternak foundation model, which is a two parameter foundation model, is used to analyze the behavior of laterally loaded beams embedded in semi-infinite media. Total potential energy variation of the system is written to formulate the problem that yielded the required field equations and the boundary conditions. Shear force discontinuities are exposed within the boundary conditions by variational method and are validated by photo elastic experiments. Exact solution of the deflection of the beam is obtained. Both foundation parameters are obtained by self calibration for this particular problem and loading type in this study. It is shown that, like the first parameter k, the second foundation parameter G also depends not only on the material type but also on the geometry and the loading type of the system. On the other hand, surface deflection of the semi infinite media under singular loading is obtained and another method is proposed to determine the foundation parameters using the solution of this problem.

Hyper Parameter Tuning Method based on Sampling for Optimal LSTM Model

  • Kim, Hyemee;Jeong, Ryeji;Bae, Hyerim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.137-143
    • /
    • 2019
  • As the performance of computers increases, the use of deep learning, which has faced technical limitations in the past, is becoming more diverse. In many fields, deep learning has contributed to the creation of added value and used on the bases of more data as the application become more divers. The process for obtaining a better performance model will require a longer time than before, and therefore it will be necessary to find an optimal model that shows the best performance more quickly. In the artificial neural network modeling a tuning process that changes various elements of the neural network model is used to improve the model performance. Except Gride Search and Manual Search, which are widely used as tuning methods, most methodologies have been developed focusing on heuristic algorithms. The heuristic algorithm can get the results in a short time, but the results are likely to be the local optimal solution. Obtaining a global optimal solution eliminates the possibility of a local optimal solution. Although the Brute Force Method is commonly used to find the global optimal solution, it is not applicable because of an infinite number of hyper parameter combinations. In this paper, we use a statistical technique to reduce the number of possible cases, so that we can find the global optimal solution.

Structure Parameter Change Estimation of a Forward Osmosis Membrane Under Pressurized Conditions in Pressure-assisted Forward Osmosis (PAFO) (가압형 정삼투 시 압력에 따른 정삼투막의 Structure Parameter 변화양상 예측)

  • Kook, Seungho;Kim, Sung-Jo;Lee, Jinwoo;Hwang, Moonhyun;Kim, In S.
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.187-196
    • /
    • 2016
  • Pressure-assisted forward osmosis (PAFO) process has recently been under spotlight for its potential to improve forward osmosis (FO) process performance by applying low hydraulic pressure on the feed side. Structure parameter, one of the governing factors in estimating water flux and solute flux across FO membranes in the solution-diffusion model (S-D model), determines solute resistivity in FO and PAFO processes. This study aims to estimate the trend of structure parameter change with respect to varying additional hydraulic pressure condition in PAFO.

A Modified Two-Parameter Solution for Crack-Tip Field in Bending Dominated Specimens

  • Jang Seok-Ki;Zhu Xian Kui
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.494-504
    • /
    • 2006
  • It is well known that the two-parameter $J-A_2$ solution can well characterize the crack-tip fields and quantify the crack-tip constraint for different flawed geometries in variety of loading conditions. However, this solution fails to do so for bending dominated specimens or geometries at large deformation because of the influence of significant global bending stress on the crack-tip field. To solve this issue, a modified $J-A_2$ solution is developed in this paper by introducing an additional term to address the global bending influence. Using the $J_2$ flow theory of plasticity and within the small-strain framework detailed finite element analyses are carried out for the single edge notched bend (SENB) specimen with a deep crack in A533B steel at different deformation levels ranging from small-scale Yielding to large-scale Yielding conditions. The numerical results of the crack-tip stress field are then compared with those determined from the $J-A_2$ solution and from the modified $J-A_2$ solution at the same level of applied loading Results indicate that the modified $J-A_2$ solution largely improves the $J-A_2$ solution, and match very well with the numerical results in the region of interest at all deformation levels. Therefore, the proposed solution can effectively describe the crack-tip field and the constraint for bending dominated specimens or geometries.

Conjugate Heat Transfer of Laminar Film Condensation Along a Horizontal Plate (강제대류 층류 막응축에서 복합열전달)

  • Lee Euk-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.238-245
    • /
    • 2006
  • This paper proposes appropriate conjugate parameters and dimensionless temperatures to analysis the conjugate problem of heat conduction in solid wall coupled with laminar film condensation flow adjacent to horizontal flat plate. An efficient methods for some fluids are proposed for its solution. The momentum and energy balance equations are reduced to a nonlinear system of ordinary differential equations with four parameters: the Prandtl number, Pr, Modified Jacob number, $Ja^*/Pr$, defined by an overall temperature difference, a property ratio $\sqrt{\rho_l{\mu}_l/{\rho_v{\mu}_v}$ and the conjugate parameter $\zeta$. The obtained similarity solution reveals the effect of the conjugate parameter, and the results are compared with the simplified solution. The variations of the heat transfer rates as well as the interface temperature and frictions along the plate are shown explicitly.

Robust $H_{\infty}$ Control for Bilinear Systems with Parameter Uncertainties via output Feedback

  • Kim, Young-Joong;Lee, Su-Gu;Chang, Sae-Kwon;Kim, Beom-Soo;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.386-391
    • /
    • 2003
  • This paper focuses on robust $H_{\infty}$ control for bilinear systems with time-varying parameter uncertainties and exogenous disturbance via output feedback. $H_{\infty}$ control is achieved via separation into a $H_{\infty}$ state feedback control problem and a $H_{\infty}$ state estimation problem. The suitable robust stabilizing output feedback control law can be constructed in term of approximated solution to x-dependent Riccati equation using successive approximation technique. Also, the $H_{\infty}$ filter gain can be constructed in term of solution to algebraic Riccati equation. The output feedback control robustly stabilizes the plant and guarantees a robust $H_{\infty}$ performance for the closed-loop systems in the face of parameter uncertainties and exogenous disturbance.

  • PDF

A Study of Conjugate Laminar Film Condensation on a Flat Plate (수평평판에서 복합 층류 막응축에 대한 연구)

  • Lee Euk-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.303-311
    • /
    • 2005
  • The problem of conjugate laminar film condensation of the pure saturated vapor in forced flow over a flat plate has been investigated as boundary layer solutions. A simple and efficient numerical method is proposed for its solution. The interfacial temperature is obtained as a root of 3rd order polynomial for laminar film condensation, and it is presented as a function of the conjugate parameter. The momentum and energy balance equations are reduced to a nonlinear system of ordinary differential equations with four parameters: the Prandtl number, Pr, Jacob number, $Ja^{\ast}$, defined by an overall temperature difference, a property ratio R and the conjugate parameter ${\zeta}$. The approximate solutions thus obtained reveal the effects of the conjugate parameter.