DOI QR코드

DOI QR Code

Structure Parameter Change Estimation of a Forward Osmosis Membrane Under Pressurized Conditions in Pressure-assisted Forward Osmosis (PAFO)

가압형 정삼투 시 압력에 따른 정삼투막의 Structure Parameter 변화양상 예측

  • Kook, Seungho (Gwangju Institute of Science and Technology) ;
  • Kim, Sung-Jo (Gwangju Institute of Science and Technology) ;
  • Lee, Jinwoo (Gwangju Institute of Science and Technology) ;
  • Hwang, Moonhyun (School of Environmental Science and Engineering, Global Desalination Research Center) ;
  • Kim, In S. (School of Environmental Science and Engineering, Global Desalination Research Center)
  • 국승호 (광주과학기술원 환경공학부) ;
  • 김성조 (광주과학기술원 환경공학부) ;
  • 이진우 (광주과학기술원 환경공학부) ;
  • 황문현 (광주과학기술원 글로벌담수화연구센터) ;
  • 김인수 (광주과학기술원 글로벌담수화연구센터)
  • Received : 2016.03.08
  • Accepted : 2016.06.10
  • Published : 2016.06.30

Abstract

Pressure-assisted forward osmosis (PAFO) process has recently been under spotlight for its potential to improve forward osmosis (FO) process performance by applying low hydraulic pressure on the feed side. Structure parameter, one of the governing factors in estimating water flux and solute flux across FO membranes in the solution-diffusion model (S-D model), determines solute resistivity in FO and PAFO processes. This study aims to estimate the trend of structure parameter change with respect to varying additional hydraulic pressure condition in PAFO.

최근 정삼투(FO) 공정의 성능향상을 위해 유입수에 낮은 수압을 가하는 가압형 정삼투(PAFO) 공정이 관심을 받고 있다. Structure parameter는 FO 및 PAFO 공정 운전시 유도용질의 확산 저항성(Solute resistivity)을 결정하며, 이는 Solution-diffusion model (S-D model)을 통한 수투과 및 염투과 성능 예측을 지배하는 인자 중에 하나이다. 본 연구는 S-D model을 이용하여 가압형 정삼투시 유입수 측에 가해지는 압력에 따른 Structure parameter 변화 양상을 예측하고자 하였다.

Keywords

References

  1. J. R. McCutcheon, R. L. McGinnis, and M. Elimelech, "A novel ammonia-carbon dioxide forward (direct) osmosis desalination process", Desalination, 174, 1 (2005). https://doi.org/10.1016/j.desal.2004.11.002
  2. S. Zhao, L. Zou, C. Y. Tang, and D. Mulcahy, "Recent developments in forward osmosis: Opportunities and challenges", J. Membr. Sci., 396, 1 (2012). https://doi.org/10.1016/j.memsci.2011.12.023
  3. D. L. Shaffer, N. Y. Yip, J. Gilron, and M. Elimelech, "Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy", J. Membr. Sci., 415-416, 1 (2012). https://doi.org/10.1016/j.memsci.2012.05.016
  4. D. L. Shaffer, J. R. Werber, H. Jaramillo, S. Lin, and M. Elimelech, "Forward osmosis: Where are we now?", Desalination, 356, 271 (2015). https://doi.org/10.1016/j.desal.2014.10.031
  5. G. Blandin, A. R. D. Verliefde, Cy. Y. Tang, A. M. Childress, and P. Le-Clech, "Validation of assisted osmosis (AFO) process: Impact of hydraulic pressure", J. Membr. Sci., 447, 1 (2013). https://doi.org/10.1016/j.memsci.2013.06.002
  6. Y. Oh, S. Lee, M. Elimelech, S. Lee, and S. Hong, "Effect of hydraulic pressure and membrane orientation on water flux and reverse solute flux in pressure assisted osmosis", J. Membr. Sci., 465, 159 (2014). https://doi.org/10.1016/j.memsci.2014.04.008
  7. T. Y. Cath, A. E. Childress, and M. Elimelech, "Forward osmosis: Principles, applications and recent developments", J. Membr. Sci., 281, 70 (2006). https://doi.org/10.1016/j.memsci.2006.05.048
  8. J. R. McCutcheon and M. Elimelech, "Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis", J. Membr. Sci., 284, 237 (2006). https://doi.org/10.1016/j.memsci.2006.07.049
  9. C. Suh and S. Lee, "Modeling reverse draw solute flux in forward osmosis with external concentration polarization in both sides of the draw and feed solution", J. Membr. Sci., 427, 365 (2013). https://doi.org/10.1016/j.memsci.2012.08.033
  10. M. Ghanbari, D. Emadzadeh, W. J. Lau, H. Riazi, D. Almasi, and A. F. Ismail, "Minimizing structural parameter of thin filmcomposite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates", Desalination, 377, 152 (2016). https://doi.org/10.1016/j.desal.2015.09.019
  11. T. P. N. Nguyen, B.-M. Jun, J. H. Lee, and Y.-N. Kwon, "Comparison of integrally asymmetric and thin film composite structures for a desirable fashion of forward osmosis membranes", J. Membr. Sci., 495, 457 (2015). https://doi.org/10.1016/j.memsci.2015.05.039
  12. J. M. C. Puguan, H.-S. Kim, K.-J. Lee, and H. Kim, "Low internal concentration polarization in forward osmosis membranes with hydrophilic crosslinked PVA nanofibers as porous support layer", Desalination, 336, 24 (2014). https://doi.org/10.1016/j.desal.2013.12.031
  13. J. G. Wijmans and R. W. Baker, "The solution-diffusion model: a review", J. Membr. Sci., 107, 1 (1995). https://doi.org/10.1016/0376-7388(95)00102-I
  14. C. Y. Tang, Q. She, W. C. L. Lay, R. Wang, and A. G. Fane, "Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration", J. Membr. Sci., 354, 123 (2010). https://doi.org/10.1016/j.memsci.2010.02.059
  15. A. D. Wilson and F. F. Stewart, "Deriving osmotic pressures of draw solutes used in osmotically driven membrane processes", J. Membr. Sci., 431, 205 (2013). https://doi.org/10.1016/j.memsci.2012.12.042
  16. M. Park, J. J. Lee, S. Lee, and J. H. Kim, "Determination of a constant membrane structure parameter in forward osmosis processes", J. Membr. Sci., 375, 241 (2011). https://doi.org/10.1016/j.memsci.2011.03.052
  17. M. Park and J. H. Kim, "Numerical analysis of spacer impacts on forward osmosis membrane process using concentration polarization index", J. Membr. Sci., 427, 10 (2013). https://doi.org/10.1016/j.memsci.2012.09.045
  18. J. Duan, E. Litwiller, and Ingo Pinnau, "Solution-diffusion with defects model for pressure-assisted forward osmosis", J. Membr. Sci., 470, 323 (2014). https://doi.org/10.1016/j.memsci.2014.07.018
  19. S. Sahebi, S. Phuntsho, Y. C. Woo, M. J. Park, L. D. Tijing, S. Hong, and H. K. Shon, "Effect of sulphonated polyethersulfone substrate for thin film composite forward osmosis membrane", Desalination, 389, 129 (2016). https://doi.org/10.1016/j.desal.2015.11.028
  20. S. S. Manickam and J. R. McCutcheon, "Model thin film composite membranes for forward osmosis: Demonstrating the inaccuracy of existing structural parameter models", J. Membr. Sci., 483, 70 (2015). https://doi.org/10.1016/j.memsci.2015.01.017
  21. N.-N. Bui, J. T. Arena, and J. R. McCutcheon, "Proper accounting of mass transfer resistances in forward osmosis: Improving the accuracy of model predictions of structural parameter", J. Membr. Sci., 492, 289 (2015). https://doi.org/10.1016/j.memsci.2015.02.001
  22. L. Huang and J. R. McCutcheon, "Impact of support layer pore size on performance of thin film composite membranes for forward osmosis", J. Membr. Sci., 483, 25 (2015). https://doi.org/10.1016/j.memsci.2015.01.025