• 제목/요약/키워드: Solution method

검색결과 14,862건 처리시간 0.041초

An Optimal Solution Algorithm for Capacity Allocation Problem of Airport Arrival-Departure

  • Lee, Sang-Un
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권10호
    • /
    • pp.77-83
    • /
    • 2015
  • This paper suggests heuristic algorithm to obtain optimal solution of minimum number of delay aircraft in airport arrivals/departures problem. This problem can be solved only mathematical optimization method. The proposed algorithm selects the minimum delays capacity in various airport capacities for number of arrivals/departures aircraft in $i^{th}$ time interval (15 minutes). In details, we apply median selection method and left-right selection method. This algorithm can be get the optimal solution of minimum number of delay aircraft for sixes actual experimental data.

부정류 해석에 의한 금강하류부 홍수위결정 (Flood Stage Determination by Implicit Nymerical Technique)

  • 선우중호
    • 물과 미래
    • /
    • 제16권2호
    • /
    • pp.123-129
    • /
    • 1983
  • One of the techniques to determine flood stages in natural channel is to find the solution of unsteady flow equations such as continuity and momentum equations. Since the exact analytic solution of these equations are not Known, the implicit numerical scheme is widely accepted tool for the approximate solution of equations. This technique is applied to the downstream of Daechung Dam in Geum River for the determination of flood stage for given frequency. However the flood stages are greatly affected by the method of reservoir Operation Method and Technical Operation Reservoir Method. Obviously, the Tech. ROM is found to be superior to Auto ROM.

  • PDF

FUZZY TRANSPORTATION PROBLEM IS SOLVED UTILIZING SIMPLE ARITHMETIC OPERATIONS, ADVANCED CONCEPT, AND RANKING TECHNIQUES

  • V. SANGEETHA;K. THIRUSANGU;P. ELUMALAI
    • Journal of applied mathematics & informatics
    • /
    • 제41권2호
    • /
    • pp.311-320
    • /
    • 2023
  • In this article, a new penalty and different ranking algorithms are used to find the lowest transportation costs for the fuzzy transportation problem. This approach utilises different ranking techniques when dealing with triangular fuzzy numbers. Also, we find that the fuzzy transportation solution of the proposed method is the same as the Fuzzy Modified Distribution Method (FMODI) solution. Finally, examples are used to show how a problem is solved.

Numerical Solution of Nonlinear Diffusion in One Dimensional Porous Medium Using Hybrid SOR Method

  • Jackel Vui Lung, Chew;Elayaraja, Aruchunan;Andang, Sunarto;Jumat, Sulaiman
    • Kyungpook Mathematical Journal
    • /
    • 제62권4호
    • /
    • pp.699-713
    • /
    • 2022
  • This paper proposes a hybrid successive over-relaxation iterative method for the numerical solution of a nonlinear diffusion in a one-dimensional porous medium. The considered mathematical model is discretized using a computational complexity reduction scheme called half-sweep finite differences. The local truncation error and the analysis of the stability of the scheme are discussed. The proposed iterative method, which uses explicit group technique and modified successive over-relaxation, is formulated systematically. This method improves the efficiency of obtaining the solution in terms of total iterations and program elapsed time. The accuracy of the proposed method, which is measured using the magnitude of absolute errors, is promising. Numerical convergence tests of the proposed method are also provided. Some numerical experiments are delivered using initial-boundary value problems to show the superiority of the proposed method against some existing numerical methods.

An Analytical Solution for Regular Progressive Water Waves

  • Shin, JangRyong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권3호
    • /
    • pp.157-167
    • /
    • 2015
  • In order to provide simple and accurate wave theory in design of offshore structure, an analytical approximation is introduced in this paper. The solution is limited to flat bottom having a constant water depth. Water is considered as inviscid, incompressible and irrotational. The solution satisfies the continuity equation, bottom boundary condition and non-linear kinematic free surface boundary condition exactly. Error for dynamic condition is quite small. The solution is suitable in description of breaking waves. The solution is presented with closed form and dispersion relation is also presented with closed form. In the last century, there have been two main approaches to the nonlinear problems. One of these is perturbation method. Stokes wave and Cnoidal wave are based on the method. The other is numerical method. Dean's stream function theory is based on the method. In this paper, power series method was considered. The power series method can be applied to certain nonlinear differential equations (initial value problems). The series coefficients are specified by a nonlinear recurrence inherited from the differential equation. Because the non-linear wave problem is a boundary value problem, the power series method cannot be applied to the problem in general. But finite number of coefficients is necessary to describe the wave profile, truncated power series is enough. Therefore the power series method can be applied to the problem. In this case, the series coefficients are specified by a set of equations instead of recurrence. By using the set of equations, the nonlinear wave problem has been solved in this paper.

A FINITE ELEMENT SOLUTION FOR THE CONSERVATION FORM OF BBM-BURGERS' EQUATION

  • Ning, Yang;Sun, Mingzhe;Piao, Guangri
    • East Asian mathematical journal
    • /
    • 제33권5호
    • /
    • pp.495-509
    • /
    • 2017
  • With the accuracy of the nonlinearity guaranteed, plenty of time and large memory space are needed when we solve the finite element numerical solution of nonlinear partial differential equations. In this paper, we use the Group Element Method (GEM) to deal with the non-linearity of the BBM-Burgers Equation with Conservation form and perform a numerical analysis for two particular initial-boundary value (the Dirichlet boundary conditions and Neumann-Dirichlet boundary conditions) problems with the Finite Element Method (FEM). Some numerical experiments are performed to analyze the error between the exact solution and the FEM solution in MATLAB.

단일 실행의 빠른 근사해 기법과 반복 실행의 최적화 기법을 이용한 이산형 시스템의 시뮬레이션 연구 (Simulation Study of Discrete Event Systems using Fast Approximation Method of Single Run and Optimization Method of Multiple Run)

  • 박경종;이영해
    • 대한산업공학회지
    • /
    • 제32권1호
    • /
    • pp.9-17
    • /
    • 2006
  • This paper deals with a discrete simulation optimization method for designing a complex probabilistic discrete event simulation. The developed algorithm uses the configuration algorithm that can change decision variables and the stopping algorithm that can end simulation in order to satisfy the given objective value during single run. It tries to estimate an auto-regressive model for evaluating correctly the objective function obtained by a small amount of output data. We apply the proposed algorithm to M/M/s model, (s, S) inventory model, and known-function problem. The proposed algorithm can't always guarantee the optimal solution but the method gives an approximate feasible solution in a relatively short time period. We, therefore, show the proposed algorithm can be used as an initial feasible solution of existing optimization methods that need multiple simulation run to search an optimal solution.

수송 네트워크에서 최대 물동량 경로문제의 근사해법 (A Heuristic Algorithm for Maximum Origin-Destination Flow Path in the Transportation Network)

  • 성기석;박순달
    • 대한산업공학회지
    • /
    • 제16권2호
    • /
    • pp.91-98
    • /
    • 1990
  • This paper studies a heuristic method for the Maximum Origin-Destination Flow Path (MODFP) in an acyclic transportation network. We construct a mathematical formulation for finding the MODFP. Then by applying Benders' partitioning method, we generate two subproblems which should be solved in turn so that they may give an optimal solution. We solve one subproblem by an optimal seeking algorithm and the other by a hueristic method. so that, we finally obtain a good solution. The computational complexity of calculating the optimal solution of the first subproblem is 0(mn) and that of calculating the heuristic solution of the other subproblem is $0(n^2).$ From the computational experiments, we estimated the performance of the heuristic method as being 99.3% and the computing time relative to optimal algorithm as being 28.76%.

  • PDF

유한요소법과 해석석의 응합에 의한 전자동 연구 (Coupling Finite Elements and Analytical Solution for Electromagnetic Field Analysis)

  • 김은배;양재면;이기식;유동일
    • 대한전기학회논문지
    • /
    • 제41권4호
    • /
    • pp.362-368
    • /
    • 1992
  • This paper presents a coupling scheme, which couples an analytical solution and the standard finite element, for analyzing the electromagnetic fields. The former is a solution of the magnetic field in free space, i.e., the outer region of boundary, and the latter represents the system with source currents and magnetic materials in the inner region of boundary. The proposed method retains the sparsity and symmetry of the final system matrix, the merits of the standard FEM. To verify the usefulness of the proposed algorithm, an example which can be solved analytically is chosen and analyzed. The results are compared with those of the standard FEM and the analytic solutions.

  • PDF

J-integral calculation by domain integral technique using adaptive finite element method

  • Phongthanapanich, Sutthisak;Potjananapasiri, Kobsak;Dechaumphai, Pramote
    • Structural Engineering and Mechanics
    • /
    • 제28권4호
    • /
    • pp.461-477
    • /
    • 2008
  • An adaptive finite element method for analyzing two-dimensional and axisymmetric nonlinear elastic fracture mechanics problems with cracks is presented. The J-integral is used as a parameter to characterize the severity of stresses and deformation near crack tips. The domain integral technique, for which all relevant quantities are integrated over any arbitrary element areas around the crack tips, is utilized as the J-integral solution scheme with 9-node degenerated crack tip elements. The solution accuracy is further improved by incorporating an error estimation procedure onto a remeshing algorithm with a solution mapping scheme to resume the analysis at a particular load level after the adaptive remeshing technique has been applied. Several benchmark problems are analyzed to evaluate the efficiency of the combined domain integral technique and the adaptive finite element method.