• Title/Summary/Keyword: Solution Temperature

Search Result 6,390, Processing Time 0.03 seconds

The Effect of Temperature of Cardioplegic Soultion on Myocardial Protection from Ischemia - Experimental Study using Isolated Rat Heart Perfusion Technique - (흰쥐의 적출된 심장에서 심정지액의 온도가 심근보호에 미치는 영향)

  • 김용한
    • Journal of Chest Surgery
    • /
    • v.25 no.2
    • /
    • pp.131-136
    • /
    • 1992
  • The effect of temperature of cardioplegic solution on myocardial preservation was studied using isolated rat heart perfusion technique. Twenty Sprague-Dawley rats, weighing 120~140gm, were pretreated with intraperitoneal injection of heparin sodium[300u/kg] and then the hearts were excised after cervical herniation 30 minutes later. The hearts were perfused in isolated working heart apparatus with oxygenated modified Tyrode solution at 37oC. After 10 minutes of non working heart perfusion, the hearts were subjected to arrest for 30 minutes by administration of 5cc cardioplegic solution at the temperature of 4oC [Group I ], 15oC [Group II], 25oC [Group III], 37oC[Group IV]. At the same time, the topical cooling of heart was performed using ice saline. After arrest, the hearts were reperfused by non working heart perfusion for 1 hour with modified Tyrode solution at 37oC. The CPK, GOT and LDH in reperfusate were measured at 5,20,40,60 minutes after start of reperfusion. With the values of those, we compared the effect of temperature of cardioplegic solution on myocardial preservation. The results were as follows; 1. The enzyme values in reperfusate were highest at 5 minute and after then declined. 2. At 5 minutes after reperfusion, the enzyme values in Group I were lower than those in other Groups. These results suggest that the cardioplegic solutions using for cardiac arrest and myocardial protection can be working better at 4oC than at any other temperature.

  • PDF

Temperature and diameter effect on hydrodynamic characteristic of surfactant drag-reducing flows

  • Indartono Y.S.;Usui H.;Suzuki H.;Komoda Y.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.4
    • /
    • pp.157-164
    • /
    • 2005
  • Hydrodynamic characteristic of surfactant drag-reducing flows is still not fully understood. This work investigated the temperature and diameter effect on hydrodynamic characteristic of cationic surfactant drag reducing flows in pipes. Solution of oleyl bishydroxyethyl methyl ammonium chloride (Ethoquad O/12), 900 ppm, as a cationic surfactant and sodium salicylate (NaSal), 540 ppm, as a counter-ion was tested at 12, 25, 40, and $50^{\circ}C$ in pipes with diameter of 13, 25, and 40 mm. Drag reduction effectiveness of this surfactant solution was evaluated in 25 mm pipe from 6 to $75^{\circ}C$. Rheological characteristic of this solution was measured by stress control type rheometer with cone-and-plate geometry. Scale-up laws proposed by previous investigators were used to evaluate the flow characteristic of the solution. It was found that this surfactant solution has clear DR capability until $70^{\circ}C$. Result of this work suggested that temperature has a significant influence in changing the hydrodynamic entrance length of surfactant drag reducing flows. From rheological measurement, it was found that the solution exhibits Shear Induced Structure at all temperatures with different degree of peak viscosity and critical shear rate.

Electrothermal Crack Analysis in a Finite Conductive Layer with Temperature-dependent Material Properties (온도 의존성 물성치를 가지는 유한한 전도층에서의 전기/열하중을 받는 균열의 해석)

  • Jang Yong-Hoon;Lee Sang-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.949-956
    • /
    • 2006
  • The method of Greenwood and Williamson is extended to obtain a solution to the coupled non-linear problem of steady-state electrical and thermal conduction across a crack in a conductive layer, for which the electrical resistivity and thermal conductivity are functions of temperature. The problem can be decomposed into the solution of a pair of non-linear algebraic equations involving boundary values and material properties. The new mixed-boundary value problem given from the thermal and electrical boundary conditions for the crack in the conductive layer is reduced in order to solve a singular integral equation of the first kind, the solution of which can be expressed in terms of the product of a series of the Chebyshev polynomials and their weight function. The non-existence of the solution for an infinite conductor in electrical and thermal conduction is shown. Numerical results are given showing the temperature field around the crack.

Synthesis of Polyacrylonitrile as Precursor for High-Performance Ultrafine Fibrids

  • Kim, Subong;Kuk, Yun-Su;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.407-414
    • /
    • 2014
  • Polyacrylonitrile (PAN) copolymers with different methyl acrylate (MA) contents were synthesized via solution polymerization and used as precursors for high-performance PAN ultrafine fibrids. The chemical structures of the copolymers were characterized using Fourier-transform infrared spectroscopy and $^{13}C$ nuclear magnetic resonance spectroscopy. Their particle sizes and aspect ratios increased with increasing viscosity, and the degree of crystallinity increased with decreasing concentration of copolymer solution. In contrast, their peak temperature and heat of exotherm increased with decreasing concentration of the copolymer solution. The aromatization indices (AIs) of the fibrids increased with increasing heat-treatment time; however, the AIs decreased when the heat-treatment temperature was higher than the onset temperature of the copolymers. On the other hand, the crystal sizes of the fibrids decreased with increasing concentration of the copolymer solution when the MA content was held constant.

Analytical Solution for Transient Temperature Distribution in Fillet Arc Welding (필릿 용접 공정에서 온도 분포 예측을 위한 해석적 모델)

  • 정선국;조형석
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.68-81
    • /
    • 1995
  • This paper presents an analytical solution to predict the transient temperature distribution in fillet arc welding. The analytical solution is obtained by solving a transient three -dimensional heat conduction equation with convection boundary conditions on the surfaces of an infinite plate with finite thicknesses, and mapping an infinite plate onto the fillet weld geometry with energy equation. The electric arc heat input on fillet weld and on infinite plate is assumed to have a traveling bivariate Gaussian distribution. To check the validity of the solution, GTA and FCA welding experiments were performed under various welding conditions. The actual isotherms of the weldment cross - sections at various distances from the arc start point are compared with those of simulation result. As the result shows a satisfactory accuracy, this analytical solution can be used to predict the transient temperature distribution in the fiIIet weld of finite thickness under a moving bivariate Gaussian distributed heat source. The simplicity and short calculation time of the analytical solution provides rationales to use the analytical solution for modeling the welding control systems or for an optimization tool of welding process parameters.

  • PDF

Effect of Concentration of Solution and Temperature on Water Flux by Semi-Permeability of Hardened Cement Paste (시멘트경화체의 반투과성에 의한 수분이동에 미치는 용액농도와 환경온도의 영향)

  • 배기선;오상근;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.131-136
    • /
    • 1997
  • It is well known that concrete is typical porous material. We pay attention to Hansen's idea that concrete may be expected to act as semi-permeable membrane, and report the effect of concentration of solution and temperature on water flux in forward osmosis. In order to measuring volume of water flux from distilled water to solution of sodium chloride through hardened cement paste, specially designed apparatus was constructed, and the following result were obtained: (1) hardened cement paste acts as semi-permeable membrane, consequently, water flux in forward osmosis may occur. (2) Rate of water flux is proportion to concentration of dilute solution, and this suggests hardened cement paste is agreeable to the theory of membrane. (3) Effect of temperature on water flux is agreeable to Arrehenius equation and is great.

  • PDF

A Study on the refrigeration vehicle system installed eutectic solution plates for milk transportation (유제품 수송용 공융냉동판 적용 냉동차량 시스템 연구)

  • 윤상국
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.338-345
    • /
    • 1999
  • The objective of this study is to developed the refrigeration vehicle system installed eutectic olu-tion plates which consists of copper tubes carrying the refrigerant between two aluminum plates and the space between the plates filled with eutectic solution. The numerical analysis for the loca-tion of plates to get the uniform low temperature distribution in storage space was carried out and the result showed that the top left-side and right-side walls were the proper places to install plates. For three different concentrations of ethylene glycol solution the temperature distribution of inside space were measured during the day time of summer and the 21% solution was found to be properto sustain the temperature of $5-10^{\circ}C$ for milk transportation. The result showed that the refrigeration truck installed eutectic plates was very efficient to keep the milk fresh during vehicle transportation.

  • PDF

A Study on Pitting Resistance of TiN Film Coated on Inconel 600 by CPP Test in High Temperature NaCl Solution (nconel 600위에 증착된 TiN 박막의 고온 NaCl 수용액에서의 CPP 실험에 의한 핏팅저항성의 연구)

  • 김용일;정한섭;김홍회;이원종
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1301-1307
    • /
    • 1995
  • Pitting corrosion of TiN film deposited on Inconel 600 by plasma assisted chemical vapor deposition (PACVD) was investigated. Cyclic potentiodynamic polarization (CPP) tests were conducted in order to determine the pit nucleation potentials, Enp, of the TiN-deposited sample and the bare Inconel 600 in deaerated NaCl solution at 25, 135 and 20$0^{\circ}C$. The effects of the TiN film thickness, the solution temperature and the Cl- concentration on Enp were studied. Enp of the TiN-deposited sample which had the film thickness above 1${\mu}{\textrm}{m}$ were higher than those of the bare Inconel 600 by 300~600mV at all the solution temperatures, implying the pitting resistance improvement of the TiN film. The morphologies of the pits generated after immersion test were examined with a scaning electron microscopy. The higher was the solution temperature, the more corrosion products, mainly composed of Cr and Ni oxides, were formed.

  • PDF

Investigation on Minimum Film Boiling Point of Highly Heated Vertical Metal Rod in Aqueous Surfactant Solution (계면활성제 수용액 내 고온 수직 금속봉의 최소막비등점에 대한 연구)

  • Lee, Chi Young;Kim, Jae Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.9
    • /
    • pp.597-603
    • /
    • 2017
  • In this study, experiments were conducted on the MFB(minimum film boiling) point of highly heated vertical metal rod quenched in aqueous surfactant solution at various temperature conditions. The aqueous Triton X-100 solution(100 wppm) and pure water were used as the liquid pool. Their temperatures ranged from $77^{\circ}C$ to $100^{\circ}C$. A stainless steel vertical rod of initial center temperature of $500^{\circ}C$ was used as a test specimen. In both liquid pools, as the liquid temperature decreased, the time to reach the MFB point decreased with a parallel increase in the temperature and heat flux of the MFB point. However, over the whole present temperature range, in the aqueous Triton X-100 solution, the time to reach the MFB point was longer, while the temperature and heat flux of the MFB point were reduced when compared with pure water. Based on the present experimental data, this study proposed the empirical correlations to predict the MFB temperature of a high temperature vertical metal rod in pure water and in aqueous Triton X-100 solution.

Effects of NaCl Concentration and Solution Temperature on the Galvanic Corrosion between CFRP and AA7075T6

  • Hur, S.Y.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.75-81
    • /
    • 2020
  • To reduce structural weight, light metals, including aluminum and magnesium alloys, have been widely used in various industries such as aircraft, transportation and automobiles. Recently, composite materials such as Carbon Fiber Reinforced Plastics (CFRP) and Graphite Epoxy Composite Material (GECM) have also been applied. However, aluminum and its alloys suffer corrosion from various factors, which include aggressive ions, pH, solution temperature and galvanic contact by potential difference. Moreover, carbon fiber in CFRP and GECM is a very efficient cathode, and very noble in the galvanic series. Galvanic contact between carbon fiber composites and metals in electrolytes such as rain or seawater, is highly undesirable. Notwithstanding the potentially dangerous effects of chloride and temperature, there is little research on galvanic corrosion according to chloride concentration and temperature. This work focused on the effects of chloride concentration and solution temperature on AA7075T6. The increased galvanic corrosion between CRFP and AA7075T6 was evaluated by electrochemical experiments, and these effects were elucidated.